BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29309677)

  • 21. Sleep and Wakefulness Are Controlled by Ventral Medial Midbrain/Pons GABAergic Neurons in Mice.
    Takata Y; Oishi Y; Zhou XZ; Hasegawa E; Takahashi K; Cherasse Y; Sakurai T; Lazarus M
    J Neurosci; 2018 Nov; 38(47):10080-10092. PubMed ID: 30282729
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NREM sleep hypersomnia and reduced sleep/wake continuity in a neuroendocrine mouse model of anxiety/depression based on chronic corticosterone administration.
    Le Dantec Y; Hache G; Guilloux JP; Guiard BP; David DJ; Adrien J; Escourrou P
    Neuroscience; 2014 Aug; 274():357-68. PubMed ID: 24909899
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of sleep/wake state on arterial blood pressure in genetically identical mice.
    Schaub CD; Tankersley C; Schwartz AR; Smith PL; Robotham JL; O'Donnell CP
    J Appl Physiol (1985); 1998 Jul; 85(1):366-71. PubMed ID: 9655797
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unsupervised Estimation of Mouse Sleep Scores and Dynamics Using a Graphical Model of Electrophysiological Measurements.
    Yaghouby F; O'Hara BF; Sunderam S
    Int J Neural Syst; 2016 Jun; 26(4):1650017. PubMed ID: 27121993
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tau protein role in sleep-wake cycle.
    Cantero JL; Hita-Yañez E; Moreno-Lopez B; Portillo F; Rubio A; Avila J
    J Alzheimers Dis; 2010; 21(2):411-21. PubMed ID: 20555133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS; Moore-Ede MC; Czeisler CA; Dement WC
    Am J Physiol; 1985 Mar; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sleep fragmentation exacerbates mechanical hypersensitivity and alters subsequent sleep-wake behavior in a mouse model of musculoskeletal sensitization.
    Sutton BC; Opp MR
    Sleep; 2014 Mar; 37(3):515-24. PubMed ID: 24587574
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavioral and sleep/wake characteristics of mice lacking norepinephrine and hypocretin.
    Hunsley MS; Curtis WR; Palmiter RD
    Genes Brain Behav; 2006 Aug; 5(6):451-7. PubMed ID: 16923149
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantifying Infra-slow Dynamics of Spectral Power and Heart Rate in Sleeping Mice.
    Fernandez LMJ; Lecci S; Cardis R; Vantomme G; Béard E; Lüthi A
    J Vis Exp; 2017 Aug; (126):. PubMed ID: 28809834
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of serotonergic activation by 5-hydroxytryptophan on sleep and body temperature of C57BL/6J and interleukin-6-deficient mice are dose and time related.
    Morrow JD; Vikraman S; Imeri L; Opp MR
    Sleep; 2008 Jan; 31(1):21-33. PubMed ID: 18220075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Topography of the sleep/wake states related EEG microstructure and transitions structure differentiates the functionally distinct cholinergic innervation disorders in rat.
    Petrovic J; Lazic K; Ciric J; Kalauzi A; Saponjic J
    Behav Brain Res; 2013 Nov; 256():108-18. PubMed ID: 23933142
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of a piezoelectric system as an alternative to electroencephalogram/ electromyogram recordings in mouse sleep studies.
    Mang GM; Nicod J; Emmenegger Y; Donohue KD; O'Hara BF; Franken P
    Sleep; 2014 Aug; 37(8):1383-92. PubMed ID: 25083019
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Trace Amine-Associated Receptor 1 Regulates Wakefulness and EEG Spectral Composition.
    Schwartz MD; Black SW; Fisher SP; Palmerston JB; Morairty SR; Hoener MC; Kilduff TS
    Neuropsychopharmacology; 2017 May; 42(6):1305-1314. PubMed ID: 27658486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sleep EEG changes after middle cerebral artery infarcts in mice: different effects of striatal and cortical lesions.
    Baumann CR; Kilic E; Petit B; Werth E; Hermann DM; Tafti M; Bassetti CL
    Sleep; 2006 Oct; 29(10):1339-44. PubMed ID: 17068988
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cortical and subcortical EEG in relation to sleep-wake behavior in mammalian species.
    Lancel M
    Neuropsychobiology; 1993; 28(3):154-9. PubMed ID: 8278030
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the bout durations of sleep and wakefulness.
    McShane BB; Galante RJ; Jensen ST; Naidoo N; Pack AI; Wyner A
    J Neurosci Methods; 2010 Nov; 193(2):321-33. PubMed ID: 20817037
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of selective dopamine D4 receptor antagonist, L-741,741, on sleep and wakefulness in the rat.
    Cavas M; Navarro JF
    Prog Neuropsychopharmacol Biol Psychiatry; 2006 Jun; 30(4):668-78. PubMed ID: 16457926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sleep modulates hypertension in leptin-deficient obese mice.
    Silvani A; Bastianini S; Berteotti C; Franzini C; Lenzi P; Lo Martire V; Zoccoli G
    Hypertension; 2009 Feb; 53(2):251-5. PubMed ID: 19114642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Magnolol, a major bioactive constituent of the bark of Magnolia officinalis, induces sleep via the benzodiazepine site of GABA(A) receptor in mice.
    Chen CR; Zhou XZ; Luo YJ; Huang ZL; Urade Y; Qu WM
    Neuropharmacology; 2012 Nov; 63(6):1191-9. PubMed ID: 22771461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Predicting Dream Recall: EEG Activation During NREM Sleep or Shared Mechanisms with Wakefulness?
    Scarpelli S; D'Atri A; Mangiaruga A; Marzano C; Gorgoni M; Schiappa C; Ferrara M; De Gennaro L
    Brain Topogr; 2017 Sep; 30(5):629-638. PubMed ID: 28434101
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.