BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 29309725)

  • 21. Structural and Sequence Similarity Makes a Significant Impact on Machine-Learning-Based Scoring Functions for Protein-Ligand Interactions.
    Li Y; Yang J
    J Chem Inf Model; 2017 Apr; 57(4):1007-1012. PubMed ID: 28358210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Prediction of protein-ligand binding affinities using multiple instance learning.
    Teramoto R; Kashima H
    J Mol Graph Model; 2010 Nov; 29(3):492-7. PubMed ID: 20965757
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved Protein-Ligand Binding Affinity Prediction with Structure-Based Deep Fusion Inference.
    Jones D; Kim H; Zhang X; Zemla A; Stevenson G; Bennett WFD; Kirshner D; Wong SE; Lightstone FC; Allen JE
    J Chem Inf Model; 2021 Apr; 61(4):1583-1592. PubMed ID: 33754707
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Knowledge-based scoring functions in drug design: 2. Can the knowledge base be enriched?
    Shen Q; Xiong B; Zheng M; Luo X; Luo C; Liu X; Du Y; Li J; Zhu W; Shen J; Jiang H
    J Chem Inf Model; 2011 Feb; 51(2):386-97. PubMed ID: 21192670
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protein-Ligand Scoring with Convolutional Neural Networks.
    Ragoza M; Hochuli J; Idrobo E; Sunseri J; Koes DR
    J Chem Inf Model; 2017 Apr; 57(4):942-957. PubMed ID: 28368587
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A general approach for developing system-specific functions to score protein-ligand docked complexes using support vector inductive logic programming.
    Amini A; Shrimpton PJ; Muggleton SH; Sternberg MJ
    Proteins; 2007 Dec; 69(4):823-31. PubMed ID: 17910057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting drug-target interaction network using deep learning model.
    You J; McLeod RD; Hu P
    Comput Biol Chem; 2019 Jun; 80():90-101. PubMed ID: 30939415
    [TBL] [Abstract][Full Text] [Related]  

  • 28. From Proteins to Ligands: Decoding Deep Learning Methods for Binding Affinity Prediction.
    Gorantla R; Kubincová A; Weiße AY; Mey ASJS
    J Chem Inf Model; 2024 Apr; 64(7):2496-2507. PubMed ID: 37983381
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ensemble of local and global information for Protein-Ligand Binding Affinity Prediction.
    Li G; Yuan Y; Zhang R
    Comput Biol Chem; 2023 Dec; 107():107972. PubMed ID: 37883905
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks.
    Hassan-Harrirou H; Zhang C; Lemmin T
    J Chem Inf Model; 2020 Jun; 60(6):2791-2802. PubMed ID: 32392050
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors.
    Kumar S; Kim MH
    J Cheminform; 2021 Mar; 13(1):28. PubMed ID: 33766140
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a graph convolutional neural network model for efficient prediction of protein-ligand binding affinities.
    Son J; Kim D
    PLoS One; 2021; 16(4):e0249404. PubMed ID: 33831016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Time-Domain Analysis of Molecular Dynamics Trajectories Using Deep Neural Networks: Application to Activity Ranking of Tankyrase Inhibitors.
    Berishvili VP; Perkin VO; Voronkov AE; Radchenko EV; Syed R; Venkata Ramana Reddy C; Pillay V; Kumar P; Choonara YE; Kamal A; Palyulin VA
    J Chem Inf Model; 2019 Aug; 59(8):3519-3532. PubMed ID: 31276400
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines.
    Koppisetty CA; Frank M; Kemp GJ; Nyholm PG
    J Chem Inf Model; 2013 Oct; 53(10):2559-70. PubMed ID: 24050538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein secondary structure prediction improved by recurrent neural networks integrated with two-dimensional convolutional neural networks.
    Guo Y; Wang B; Li W; Yang B
    J Bioinform Comput Biol; 2018 Oct; 16(5):1850021. PubMed ID: 30419785
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Empirical Scoring Functions for Affinity Prediction of Protein-ligand Complexes.
    Pason LP; Sotriffer CA
    Mol Inform; 2016 Dec; 35(11-12):541-548. PubMed ID: 27870243
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Does a more precise chemical description of protein-ligand complexes lead to more accurate prediction of binding affinity?
    Ballester PJ; Schreyer A; Blundell TL
    J Chem Inf Model; 2014 Mar; 54(3):944-55. PubMed ID: 24528282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Cascade Graph Convolutional Network for Predicting Protein-Ligand Binding Affinity.
    Shen H; Zhang Y; Zheng C; Wang B; Chen P
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919681
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A spatial-temporal gated attention module for molecular property prediction based on molecular geometry.
    Li C; Wang J; Niu Z; Yao J; Zeng X
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822856
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening.
    Cang Z; Mu L; Wei GW
    PLoS Comput Biol; 2018 Jan; 14(1):e1005929. PubMed ID: 29309403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 29.