These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
351 related articles for article (PubMed ID: 29310122)
81. Whole-genome sequencing reveals nosocomial Clostridioides difficile transmission and a previously unsuspected epidemic scenario. García-Fernández S; Frentrup M; Steglich M; Gonzaga A; Cobo M; López-Fresneña N; Cobo J; Morosini MI; Cantón R; Del Campo R; Nübel U Sci Rep; 2019 May; 9(1):6959. PubMed ID: 31061423 [TBL] [Abstract][Full Text] [Related]
82. Transcription and analysis of polymorphism in a cluster of genes encoding surface-associated proteins of Clostridium difficile. Savariau-Lacomme MP; Lebarbier C; Karjalainen T; Collignon A; Janoir C J Bacteriol; 2003 Aug; 185(15):4461-70. PubMed ID: 12867455 [TBL] [Abstract][Full Text] [Related]
83. A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor. Whittle MJ; Bilverstone TW; van Esveld RJ; Lücke AC; Lister MM; Kuehne SA; Minton NP Microbiol Spectr; 2022 Feb; 10(1):e0229521. PubMed ID: 35107319 [TBL] [Abstract][Full Text] [Related]
84. Sequence similarity of Clostridium difficile strains by analysis of conserved genes and genome content is reflected by their ribotype affiliation. Kurka H; Ehrenreich A; Ludwig W; Monot M; Rupnik M; Barbut F; Indra A; Dupuy B; Liebl W PLoS One; 2014; 9(1):e86535. PubMed ID: 24482682 [TBL] [Abstract][Full Text] [Related]
85. Polymerase chain reaction ribotyping of Clostridium difficile isolates in Qatar: a hospital-based study. Al-Thani AA; Hamdi WS; Al-Ansari NA; Doiphode SH; Wilson GJ BMC Infect Dis; 2014 Sep; 14():502. PubMed ID: 25223337 [TBL] [Abstract][Full Text] [Related]
86. A search for Clostridium difficile ribotypes 027 and 078 in Brazil. Monteiro Ade A; Pires RN; Persson S; Rodrigues Filho EM; Pasqualotto AC Braz J Infect Dis; 2014; 18(6):672-4. PubMed ID: 25307680 [TBL] [Abstract][Full Text] [Related]
87. Emergence of Clostridium difficile ribotype 027 in Korea. Kim H; Lee Y; Moon HW; Lim CS; Lee K; Chong Y Korean J Lab Med; 2011 Jul; 31(3):191-6. PubMed ID: 21779194 [TBL] [Abstract][Full Text] [Related]
88. Exoproteomic analysis of two MLST clade 2 strains of Clostridioides difficile from Latin America reveal close similarities. de Melo Pacífico D; Costa CL; Moura H; Barr JR; Maia GA; Filho VB; Moreira RS; Wagner G; Domingues RMCP; Quesada-Gómez C; de Oliveira Ferreira E; de Castro Brito GA Sci Rep; 2021 Jun; 11(1):13273. PubMed ID: 34168208 [TBL] [Abstract][Full Text] [Related]
89. The epidemiology of Clostridioides difficile infection in Brazil: A systematic review covering thirty years. Trindade CNR; Domingues RMCP; Ferreira EO Anaerobe; 2019 Aug; 58():13-21. PubMed ID: 30851427 [TBL] [Abstract][Full Text] [Related]
91. Nationwide surveillance study of Clostridium difficile in Australian neonatal pigs shows high prevalence and heterogeneity of PCR ribotypes. Knight DR; Squire MM; Riley TV Appl Environ Microbiol; 2015 Jan; 81(1):119-23. PubMed ID: 25326297 [TBL] [Abstract][Full Text] [Related]
92. Clostridium difficile infection in an Iranian hospital. Jalali M; Khorvash F; Warriner K; Weese JS BMC Res Notes; 2012 Mar; 5():159. PubMed ID: 22436392 [TBL] [Abstract][Full Text] [Related]
93. The Clostridium difficile PCR ribotype 027 lineage: a pathogen on the move. Valiente E; Cairns MD; Wren BW Clin Microbiol Infect; 2014 May; 20(5):396-404. PubMed ID: 24621128 [TBL] [Abstract][Full Text] [Related]
94. Bacterial pathogenesis: Clostridium difficile is sweet on trehalose. Du Toit A Nat Rev Microbiol; 2018 Jan; 16(2):64. PubMed ID: 29332941 [No Abstract] [Full Text] [Related]
95. An Additive Sugar Helps the C. diff Go Round. Abt MC Cell Host Microbe; 2018 Feb; 23(2):156-158. PubMed ID: 29447694 [TBL] [Abstract][Full Text] [Related]
96. Antagonism toward the intestinal microbiota and its effect on Zhao W; Caro F; Robins W; Mekalanos JJ Science; 2018 Jan; 359(6372):210-213. PubMed ID: 29326272 [TBL] [Abstract][Full Text] [Related]
97. Ethanolamine is a valuable nutrient source that impacts Clostridium difficile pathogenesis. Nawrocki KL; Wetzel D; Jones JB; Woods EC; McBride SM Environ Microbiol; 2018 Apr; 20(4):1419-1435. PubMed ID: 29349925 [TBL] [Abstract][Full Text] [Related]
98. Precision editing of the gut microbiota ameliorates colitis. Zhu W; Winter MG; Byndloss MX; Spiga L; Duerkop BA; Hughes ER; Büttner L; de Lima Romão E; Behrendt CL; Lopez CA; Sifuentes-Dominguez L; Huff-Hardy K; Wilson RP; Gillis CC; Tükel Ç; Koh AY; Burstein E; Hooper LV; Bäumler AJ; Winter SE Nature; 2018 Jan; 553(7687):208-211. PubMed ID: 29323293 [TBL] [Abstract][Full Text] [Related]
99. Identification and initial optimization of inhibitors of Clostridium difficile (C. difficile) toxin B (TcdB). Letourneau JJ; Stroke IL; Hilbert DW; Sturzenbecker LJ; Marinelli BA; Quintero JG; Sabalski J; Ma L; Diller DJ; Stein PD; Webb ML Bioorg Med Chem Lett; 2018 Feb; 28(4):756-761. PubMed ID: 29331267 [TBL] [Abstract][Full Text] [Related]
100. Did a Sugar Called Trehalose Contribute to the Clostridium difficile Epidemic? Abbasi J JAMA; 2018 Apr; 319(14):1425-1426. PubMed ID: 29562072 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]