BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 29310218)

  • 1. Raman hyperspectral imaging as an effective and highly informative tool to study the diagenetic alteration of fossil bones.
    Dal Sasso G; Angelini I; Maritan L; Artioli G
    Talanta; 2018 Mar; 179():167-176. PubMed ID: 29310218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessing Raman spectroscopy as a prescreening tool for the selection of archaeological bone for stable isotopic analysis.
    Halcrow SE; Rooney J; Beavan N; Gordon KC; Tayles N; Gray A
    PLoS One; 2014; 9(7):e98462. PubMed ID: 25062283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscale imaging of the preservation state of 5,000-year-old archaeological bones by synchrotron infrared microspectroscopy.
    Reiche I; Lebon M; Chadefaux C; Müller K; Le Hô AS; Gensch M; Schade U
    Anal Bioanal Chem; 2010 Jul; 397(6):2491-9. PubMed ID: 20506017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of collagen preservation in bones recovered in archaeological contexts using NIR Hyperspectral Imaging.
    Vincke D; Miller R; Stassart É; Otte M; Dardenne P; Collins M; Wilkinson K; Stewart J; Baeten V; Fernández Pierna JA
    Talanta; 2014 Jul; 125():181-8. PubMed ID: 24840431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal curve of apatite crystallinity for the assessment of bone integrity and preservation.
    Dal Sasso G; Asscher Y; Angelini I; Nodari L; Artioli G
    Sci Rep; 2018 Aug; 8(1):12025. PubMed ID: 30104595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey.
    Bayarı SH; Özdemir K; Sen EH; Araujo-Andrade C; Erdal YS
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118311. PubMed ID: 32330809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biogenic apatite in carbonate concretions with and without fossils investigated in situ by micro-Raman spectroscopy.
    Kitanaka R; Tsuboi M; Ozaki Y
    Sci Rep; 2023 Jun; 13(1):9714. PubMed ID: 37322242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlative microscopy of the constituents of a dinosaur rib fossil and hosting mudstone: Implications on diagenesis and fossil preservation.
    Kim JK; Kwon YE; Lee SG; Kim CY; Kim JG; Huh M; Lee E; Kim YJ
    PLoS One; 2017; 12(10):e0186600. PubMed ID: 29049347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diagenetic processes in Quaternary fossil bones from tropical limestone caves.
    de Sousa DV; Eltink E; Oliveira RAP; Félix JF; Guimarães LM
    Sci Rep; 2020 Dec; 10(1):21425. PubMed ID: 33293631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preservation of ancient DNA in thermally damaged archaeological bone.
    Ottoni C; Koon HE; Collins MJ; Penkman KE; Rickards O; Craig OE
    Naturwissenschaften; 2009 Feb; 96(2):267-78. PubMed ID: 19043689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archaeological bone lipids as palaeodietary markers.
    Colonese AC; Farrell T; Lucquin A; Firth D; Charlton S; Robson HK; Alexander M; Craig OE
    Rapid Commun Mass Spectrom; 2015 Apr; 29(7):611-8. PubMed ID: 26212278
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.
    Harvey VL; Egerton VM; Chamberlain AT; Manning PL; Buckley M
    PLoS One; 2016; 11(3):e0150650. PubMed ID: 26938469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raman Spectra and Ancient Life: Vibrational ID Profiles of Fossilized (Bone) Tissues.
    Jurašeková Z; Fabriciová G; Silveira LF; Lee YN; Gutak JM; Ataabadi MM; Kundrát M
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying archaeo-organic degradation - A multiproxy approach to understand the accelerated deterioration of the ancient organic cultural heritage at the Swedish Mesolithic site Ageröd.
    Boethius A; Hollund H; Linderholm J; Vanhanen S; Kjällquist M; Magnell O; Apel J
    PLoS One; 2020; 15(9):e0239588. PubMed ID: 32966345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of archaeological burnt bones: contribution of a new analytical protocol based on derivative FTIR spectroscopy and curve fitting of the nu1nu3 PO4 domain.
    Lebon M; Reiche I; Fröhlich F; Bahain JJ; Falguères C
    Anal Bioanal Chem; 2008 Dec; 392(7-8):1479-88. PubMed ID: 18972105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Biogenic decomposition of bone collagens].
    Turban-Just S
    Anthropol Anz; 1997 Jun; 55(2):131-41. PubMed ID: 9341079
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A combined chemical imaging approach using (MC) LA-ICP-MS and NIR-HSI to evaluate the diagenetic status of bone material for Sr isotope analysis.
    Retzmann A; Blanz M; Zitek A; Irrgeher J; Feldmann J; Teschler-Nicola M; Prohaska T
    Anal Bioanal Chem; 2019 Jan; 411(3):565-580. PubMed ID: 30511253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The oxygen isotope relationship between the phosphate and structural carbonate fractions of human bioapatite.
    Chenery CA; Pashley V; Lamb AL; Sloane HJ; Evans JA
    Rapid Commun Mass Spectrom; 2012 Feb; 26(3):309-19. PubMed ID: 22223318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A protocol for using attenuated total reflection Fourier-transform infrared spectroscopy for pre-screening ancient bone collagen prior to radiocarbon dating.
    Naito YI; Yamane M; Kitagawa H
    Rapid Commun Mass Spectrom; 2020 May; 34(10):e8720. PubMed ID: 31899568
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isotopic biogeochemistry as a marker of Neandertal diet.
    Bocherens H
    Anthropol Anz; 1997 Jun; 55(2):101-20. PubMed ID: 9259974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.