BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29310251)

  • 1. Catalytic activity of biomimetic model of cytochrome P450 in oxidation of dopamine.
    Yan X; Lu N; Gu Y; Li C; Zhang T; Liu H; Zhang Z; Zhai S
    Talanta; 2018 Mar; 179():401-408. PubMed ID: 29310251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergetic catalysis based on the proline tailed metalloporphyrin with graphene sheet as efficient mimetic enzyme for ultrasensitive electrochemical detection of dopamine.
    Yan X; Gu Y; Li C; Tang L; Zheng B; Li Y; Zhang Z; Yang M
    Biosens Bioelectron; 2016 Mar; 77():1032-8. PubMed ID: 26556183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel electrochemical biomimetic sensor based on poly(Cu-AMT) with reduced graphene oxide for ultrasensitive detection of dopamine.
    Li Y; Gu Y; Zheng B; Luo L; Li C; Yan X; Zhang T; Lu N; Zhang Z
    Talanta; 2017 Jan; 162():80-89. PubMed ID: 27837888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic oxidation of dopamine based on non-covalent functionalization of manganese tetraphenylporphyrin/reduced graphene oxide nanocomposite.
    Sakthinathan S; Lee HF; Chen SM; Tamizhdurai P
    J Colloid Interface Sci; 2016 Apr; 468():120-127. PubMed ID: 26835582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic amplification based on hole-transporting materials as efficient metal-free electrocatalysts for non-enzymatic glucose sensing.
    Gu Y; Yuan R; Yan X; Li C; Liu W; Chen R; Tang L; Zheng B; Li Y; Zhang Z; Yang M
    Anal Chim Acta; 2015 Aug; 889():113-22. PubMed ID: 26343433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Galactodendritic porphyrinic conjugates as new biomimetic catalysts for oxidation reactions.
    Castro KA; Silva S; Pereira PM; Simões MM; Neves Mda G; Cavaleiro JA; Wypych F; Tomé JP; Nakagaki S
    Inorg Chem; 2015 May; 54(9):4382-93. PubMed ID: 25897563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Axial ligand and spin-state influence on the formation and reactivity of hydroperoxo-iron(III) porphyrin complexes.
    Franke A; Fertinger C; van Eldik R
    Chemistry; 2012 May; 18(22):6935-49. PubMed ID: 22532376
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives.
    Watanabe Y
    J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous electrochemical detection of ascorbic acid, dopamine and uric acid based on graphene anchored with Pd-Pt nanoparticles.
    Yan J; Liu S; Zhang Z; He G; Zhou P; Liang H; Tian L; Zhou X; Jiang H
    Colloids Surf B Biointerfaces; 2013 Nov; 111():392-7. PubMed ID: 23850748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance Raman and electrocatalytic behavior of thiolate and imidazole bound iron porphyrin complexes on self assembled monolayers: functional modeling of cytochrome P450.
    Sengupta K; Chatterjee S; Samanta S; Bandyopadhyay S; Dey A
    Inorg Chem; 2013 Feb; 52(4):2000-14. PubMed ID: 23356644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metalloporphyrins as biomimetic models for cytochrome p-450 in the oxidation of atrazine.
    Gotardo MC; Moraes LA; Assis MD
    J Agric Food Chem; 2006 Dec; 54(26):10011-8. PubMed ID: 17177535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pre-steady state reactivity of 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin iron(III) chloride with hydrogen peroxide.
    Cunningham ID; Basaleh A; Gazzaz HA
    Dalton Trans; 2012 Aug; 41(30):9158-60. PubMed ID: 22735106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, direct electrochemistry, and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin.
    Tu W; Lei J; Zhang S; Ju H
    Chemistry; 2010 Sep; 16(35):10771-7. PubMed ID: 20665577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel electrochemical sensor based on FeS anchored reduced graphene oxide nanosheets for simultaneous determination of dopamine and acetaminophen.
    Liu X; Shangguan E; Li J; Ning S; Guo L; Li Q
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):628-636. PubMed ID: 27770936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine.
    Vilian ATE; An S; Choe SR; Kwak CH; Huh YS; Lee J; Han YK
    Biosens Bioelectron; 2016 Dec; 86():122-128. PubMed ID: 27344607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical detection of dopamine using porphyrin-functionalized graphene.
    Wu L; Feng L; Ren J; Qu X
    Biosens Bioelectron; 2012 Apr; 34(1):57-62. PubMed ID: 22341756
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Metalloporphyrin catalyzed biomimetic oxidation potentials: potential uses and applications].
    Balogh GT; Keserü GM
    Acta Pharm Hung; 2003; 73(3):153-62. PubMed ID: 15112438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apigenin-7-O-glucoside oxidation catalyzed by P450-bioinspired systems.
    Bolzon LB; Dos Santos JS; Silva DB; Crevelin EJ; Moraes LA; Lopes NP; Assis MD
    J Inorg Biochem; 2017 May; 170():117-124. PubMed ID: 28236787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide.
    Wang W; Xu G; Cui XT; Sheng G; Luo X
    Biosens Bioelectron; 2014 Aug; 58():153-6. PubMed ID: 24632460
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.
    Zhao M; Ou S; Wu CD
    Acc Chem Res; 2014 Apr; 47(4):1199-207. PubMed ID: 24499017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.