These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 29310302)
1. A label-free turn-on-off fluorescent sensor for the sensitive detection of cysteine via blocking the Ag Li Y; Deng Y; Zhou X; Hu J Talanta; 2018 Mar; 179():742-752. PubMed ID: 29310302 [TBL] [Abstract][Full Text] [Related]
2. Fluorescence turn-on sensing of L-cysteine based on FRET between Au-Ag nanoclusters and Au nanorods. Li JJ; Qiao D; Zhao J; Weng GJ; Zhu J; Zhao JW Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jun; 217():247-255. PubMed ID: 30947133 [TBL] [Abstract][Full Text] [Related]
3. Dually emitting gold-silver nanoclusters as viable ratiometric fluorescent probes for cysteine and arginine. Liu M; Li N; He Y; Ge Y; Song G Mikrochim Acta; 2018 Jan; 185(2):147. PubMed ID: 29594587 [TBL] [Abstract][Full Text] [Related]
4. Fluorometric determination and intracellular imaging of cysteine by using glutathione capped gold nanoclusters and cerium(III) induced aggregation. Lai Q; Liu Q; Zhao K; Duan X; Wang G; Su X Mikrochim Acta; 2019 May; 186(6):327. PubMed ID: 31053973 [TBL] [Abstract][Full Text] [Related]
5. Turn-on fluorescence detection of cysteine with glutathione protected silver nanoclusters. Cao N; Zhou H; Tan H; Qi R; Chen J; Zhang S; Xu J Methods Appl Fluoresc; 2019 Jun; 7(3):034004. PubMed ID: 31174198 [TBL] [Abstract][Full Text] [Related]
7. High-sensitivity Detection of Cysteine and Glutathione Using Au Nanoclusters Based on Aggregation-induced Emission. Zhang Y; Xu H; Chen Y; You X; Pu Y; Xu W; Liao X J Fluoresc; 2020 Dec; 30(6):1491-1498. PubMed ID: 32897494 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence red-shift of gold-silver nanoclusters upon interaction with cysteine and its application. Feng T; Chen Y; Feng B; Yan J; Di J Spectrochim Acta A Mol Biomol Spectrosc; 2019 Jan; 206():97-103. PubMed ID: 30086452 [TBL] [Abstract][Full Text] [Related]
9. Toward selective, sensitive, and discriminative detection of Hg(2+) and Cd(2+)via pH-modulated surface chemistry of glutathione-capped gold nanoclusters. Huang P; Li S; Gao N; Wu F Analyst; 2015 Nov; 140(21):7313-21. PubMed ID: 26347906 [TBL] [Abstract][Full Text] [Related]
10. A highly selective sensor of cysteine with tunable sensitivity and detection window based on dual-emission Ag nanoclusters. Zhu J; Song X; Gao L; Li Z; Liu Z; Ding S; Zou S; He Y Biosens Bioelectron; 2014 Mar; 53():71-5. PubMed ID: 24121225 [TBL] [Abstract][Full Text] [Related]
11. A fluorescein-gold nanoparticles probe based on inner filter effect and aggregation for sensing of biothiols. Qin X; Yuan C; Chen Y; Wang Y J Photochem Photobiol B; 2020 Sep; 210():111986. PubMed ID: 32771912 [TBL] [Abstract][Full Text] [Related]
12. Silver ions involved fluorescence "on-off" responses of gold nanoclusters system for determination of carbendazim residues in fruit samples. Guan M; Guo Y; Yan X; Si X; Peng X; Lei Y; Shen X; Luo L; He H Food Chem; 2022 Aug; 386():132836. PubMed ID: 35381539 [TBL] [Abstract][Full Text] [Related]
13. Green synthesis of highly fluorescent Au(I)@Ag2/Ag3-thiolate core-shell particles for selective detection of cysteine and Pb(II). Ganguly M; Jana J; Mondal C; Pal A; Pal T Phys Chem Chem Phys; 2014 Sep; 16(34):18185-97. PubMed ID: 25052962 [TBL] [Abstract][Full Text] [Related]
14. Facile preparation of high-quantum-yield gold nanoclusters: application to probing mercuric ions and biothiols. Chang HC; Chang YF; Fan NC; Ho JA ACS Appl Mater Interfaces; 2014; 6(21):18824-31. PubMed ID: 25323388 [TBL] [Abstract][Full Text] [Related]
15. Sensitive and selective detection of biothiols based on target-induced agglomeration of silver nanoclusters. Zhang N; Qu F; Luo HQ; Li NB Biosens Bioelectron; 2013 Apr; 42():214-8. PubMed ID: 23208088 [TBL] [Abstract][Full Text] [Related]
16. Chemical etching of pH-sensitive aggregation-induced emission-active gold nanoclusters for ultra-sensitive detection of cysteine. Wang J; Lin X; Su L; Yin J; Shu T; Zhang X Nanoscale; 2018 Dec; 11(1):294-300. PubMed ID: 30534733 [TBL] [Abstract][Full Text] [Related]
17. Highly soluble PEGylated pyrene-gold nanoparticles dyads for sensitive turn-on fluorescent detection of biothiols. Xu JP; Jia L; Fang Y; Lv LP; Song ZG; Ji J Analyst; 2010 Sep; 135(9):2323-7. PubMed ID: 20603668 [TBL] [Abstract][Full Text] [Related]
18. A label-free turn-on fluorescence probe for rapidly distinguishing cysteine over glutathione in water solution. Yan L; Kong Z; Shen W; Du W; Zhou Y; Qi Z Anal Biochem; 2016 May; 500():1-5. PubMed ID: 26869082 [TBL] [Abstract][Full Text] [Related]
19. Potassium triiodide-quenched gold nanocluster as a fluorescent turn-on probe for sensing cysteine/homocysteine in human serum. Nebu J; Anjali Devi JS; Aparna RS; Aswathy B; Lekha GM; Sony G Anal Bioanal Chem; 2019 Feb; 411(5):997-1007. PubMed ID: 30637437 [TBL] [Abstract][Full Text] [Related]
20. Sensitive signal-on fluorescent sensing for copper ions based on the polyethyleneimine-capped silver nanoclusters-cysteine system. Zhang N; Qu F; Luo HQ; Li NB Anal Chim Acta; 2013 Aug; 791():46-50. PubMed ID: 23890605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]