These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 2931050)
1. Vanadyl and vanadate inhibit Ca2+ transport systems of the adipocyte plasma membrane and endoplasmic reticulum. Delfert DM; McDonald JM Arch Biochem Biophys; 1985 Sep; 241(2):665-72. PubMed ID: 2931050 [TBL] [Abstract][Full Text] [Related]
2. The (Ca2+ + Mg2+)-stimulated ATPase of the rat parotid endoplasmic reticulum. Thiyagarajah P; Lim SC Biochem J; 1986 Apr; 235(2):491-8. PubMed ID: 2943271 [TBL] [Abstract][Full Text] [Related]
3. myo-Inositol 1,4,5-trisphosphate mobilizes Ca2+ from isolated adipocyte endoplasmic reticulum but not from plasma membranes. Delfert DM; Hill S; Pershadsingh HA; Sherman WR; McDonald JM Biochem J; 1986 May; 236(1):37-44. PubMed ID: 2947569 [TBL] [Abstract][Full Text] [Related]
4. Characteristics of Mg2+-dependent, ATP-activated Ca2+ transport in synaptic and microsomal membranes and in permeabilized synaptosomes. Michaelis ML; Kitos TE; Nunley EW; Lecluyse E; Michaelis EK J Biol Chem; 1987 Mar; 262(9):4182-9. PubMed ID: 2951384 [TBL] [Abstract][Full Text] [Related]
5. Ca2+-transport ATPases of vascular smooth muscle. Eggermont JA; Vrolix M; Raeymaekers L; Wuytack F; Casteels R Circ Res; 1988 Feb; 62(2):266-78. PubMed ID: 2962783 [TBL] [Abstract][Full Text] [Related]
6. Relationship between calcium ion transport and (Ca2+ + Mg2+)-atpase activity in adipocyte endoplasmic reticulum. Black BL; Jarett L; McDonald JM Biochim Biophys Acta; 1980 Mar; 596(3):359-71. PubMed ID: 6102477 [TBL] [Abstract][Full Text] [Related]
7. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes, and microsomes. Michaelis EK; Michaelis ML; Chang HH; Kitos TE J Biol Chem; 1983 May; 258(10):6101-8. PubMed ID: 6133858 [TBL] [Abstract][Full Text] [Related]
8. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Wibo M; Morel N; Godfraind T Biochim Biophys Acta; 1981 Dec; 649(3):651-60. PubMed ID: 6459127 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of red cell Ca2+-ATPase by vanadate. Bond GH; Hudgins PM Biochim Biophys Acta; 1980 Aug; 600(3):781-90. PubMed ID: 6447513 [TBL] [Abstract][Full Text] [Related]
10. [Effect of inhibitors of energy-dependent Ca2+-transporting systems on calcium pumps of a smooth muscle cell]. Kosterin SA; Bratkova NF; Babich LG; Shinlova OP; Slinchenko NN; Shlykov SG; Zimina BP; Rovenets NA; Velkich TA Ukr Biokhim Zh (1978); 1996; 68(6):50-61. PubMed ID: 9273745 [TBL] [Abstract][Full Text] [Related]
11. Calmodulin-sensitive ATP-dependent Ca2+ transport across adipocyte plasma membranes. Pershadsingh HA; Landt M; McDonald JM J Biol Chem; 1980 Oct; 255(19):8983-6. PubMed ID: 6106020 [TBL] [Abstract][Full Text] [Related]
12. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. XI. The effect of vanadate on 45Ca-efflux and sugar transport in adipose tissue and skeletal muscle. Clausen T; Andersen TL; Stürup-Johansen M; Petkova O Biochim Biophys Acta; 1981 Aug; 646(2):261-7. PubMed ID: 6913407 [TBL] [Abstract][Full Text] [Related]
13. A kinetic study of the interaction of vanadate with the Ca2+ + Mg2+-dependent ATPase from sarcoplasmic reticulum. Ortiz A; García-Carmona F; García-Cánovas F; Gómez-Fernández JC Biochem J; 1984 Jul; 221(1):213-22. PubMed ID: 6147134 [TBL] [Abstract][Full Text] [Related]
14. Ca2+ transporting activity of membrane fractions isolated from the post-mitochondrial supernatant of rat liver. Famulski K; Carafoli E Cell Calcium; 1982 Aug; 3(3):263-81. PubMed ID: 6291766 [TBL] [Abstract][Full Text] [Related]
15. ATP-dependent calcium transport and its correlation with Ca2+ -ATPase activity in basolateral plasma membranes of rat duodenum. Ghijsen WE; De Jong MD; Van Os CH Biochim Biophys Acta; 1982 Jul; 689(2):327-36. PubMed ID: 6214277 [TBL] [Abstract][Full Text] [Related]
16. Characterization of a Ca2+-stimulated Mg2+-dependent adenosine triphosphatase in Friend murine erythroleukemia cell plasma membranes. Debetto P; Cantley L J Biol Chem; 1984 Nov; 259(22):13824-31. PubMed ID: 6150038 [TBL] [Abstract][Full Text] [Related]
17. Inhibition by orthovanadate of ATP-dependent Ca2+ transport in microsomes isolated from rat liver. Epping RJ; Bygrave FL Membr Biochem; 1984; 5(3):167-80. PubMed ID: 6565171 [TBL] [Abstract][Full Text] [Related]
18. ATP-dependent Ca2+ transport in vesicles isolated from the bile canalicular region of the hepatocyte plasma membrane. Bachs O; Famulski KS; Mirabelli F; Carafoli E Eur J Biochem; 1985 Feb; 147(1):1-7. PubMed ID: 3156034 [TBL] [Abstract][Full Text] [Related]
19. Ca2+ transport in muscle. A study of the Ca2+-transport ATPases in smooth muscle. Wuytack F Verh K Acad Geneeskd Belg; 1989; 51(3):269-93. PubMed ID: 2531511 [TBL] [Abstract][Full Text] [Related]
20. Characterization of the (Ca2+-Mg2+)ATPase purified by calmodulin-affinity chromatography from bovine aortic smooth muscle. Furukawa K; Nakamura H J Biochem; 1984 Nov; 96(5):1343-50. PubMed ID: 6151947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]