These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Acoustic suppression of the coffee-ring effect. Mampallil D; Reboud J; Wilson R; Wylie D; Klug DR; Cooper JM Soft Matter; 2015 Sep; 11(36):7207-13. PubMed ID: 26264649 [TBL] [Abstract][Full Text] [Related]
5. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis. Li YF; Sheng YJ; Tsao HK Langmuir; 2013 Jun; 29(25):7802-11. PubMed ID: 23721254 [TBL] [Abstract][Full Text] [Related]
6. Magnetic Field-Driven Convection for Directed Surface Patterning of Colloids. Lee JG; Porter V; Shelton WA; Bharti B Langmuir; 2018 Dec; 34(50):15416-15424. PubMed ID: 30421934 [TBL] [Abstract][Full Text] [Related]
7. Fast evaporation of spreading droplets of colloidal suspensions. Maki KL; Kumar S Langmuir; 2011 Sep; 27(18):11347-63. PubMed ID: 21834573 [TBL] [Abstract][Full Text] [Related]
8. Drying of Ethanol/Water Droplets Containing Silica Nanoparticles. Shi J; Yang L; Bain CD ACS Appl Mater Interfaces; 2019 Apr; 11(15):14275-14285. PubMed ID: 30901186 [TBL] [Abstract][Full Text] [Related]
9. Suppression of the coffee-ring effect by shape-dependent capillary interactions. Yunker PJ; Still T; Lohr MA; Yodh AG Nature; 2011 Aug; 476(7360):308-11. PubMed ID: 21850105 [TBL] [Abstract][Full Text] [Related]
10. Reversing Coffee-Ring Effect by Laser-Induced Differential Evaporation. Yen TM; Fu X; Wei T; Nayak RU; Shi Y; Lo YH Sci Rep; 2018 Feb; 8(1):3157. PubMed ID: 29453347 [TBL] [Abstract][Full Text] [Related]
11. Discrete Element Model for Suppression of Coffee-Ring Effect. Xu T; Lam ML; Chen TH Sci Rep; 2017 Feb; 7():42817. PubMed ID: 28216639 [TBL] [Abstract][Full Text] [Related]
12. From coffee stains to uniform deposits: Significance of the contact-line mobility. Matavž A; Uršič U; Močivnik J; Richter D; Humar M; Čopar S; Malič B; Bobnar V J Colloid Interface Sci; 2022 Feb; 608(Pt 2):1718-1727. PubMed ID: 34742086 [TBL] [Abstract][Full Text] [Related]
13. Mechanism and control of "coffee-ring erosion" phenomena in structurally colored ionomer films. Islam S; Velev OD Soft Matter; 2020 Mar; 16(11):2683-2694. PubMed ID: 32026917 [TBL] [Abstract][Full Text] [Related]
14. Formation of coffee stains on porous surfaces. Dou R; Derby B Langmuir; 2012 Mar; 28(12):5331-8. PubMed ID: 22385387 [TBL] [Abstract][Full Text] [Related]
15. Suppression of the coffee-ring effect by sugar-assisted depinning of contact line. Shimobayashi SF; Tsudome M; Kurimura T Sci Rep; 2018 Dec; 8(1):17769. PubMed ID: 30538268 [TBL] [Abstract][Full Text] [Related]
16. Surfactant-mediated control of colloid pattern assembly and attachment strength in evaporating droplets. Morales VL; Parlange JY; Wu M; Pérez-Reche FJ; Zhang W; Sang W; Steenhuis TS Langmuir; 2013 Feb; 29(6):1831-40. PubMed ID: 23327491 [TBL] [Abstract][Full Text] [Related]
17. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces. Kim DO; Pack M; Hu H; Kim H; Sun Y Langmuir; 2016 Nov; 32(45):11899-11906. PubMed ID: 27788012 [TBL] [Abstract][Full Text] [Related]
18. Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness. Anyfantakis M; Baigl D Angew Chem Int Ed Engl; 2014 Dec; 53(51):14077-81. PubMed ID: 25288180 [TBL] [Abstract][Full Text] [Related]
19. Self-Induced Solutal Marangoni Flows Realize Coffee-Ring-Less Quantum Dot Microarrays with Extensive Geometric Tunability and Scalability. Pyeon J; Song KM; Jung YS; Kim H Adv Sci (Weinh); 2022 Apr; 9(11):e2104519. PubMed ID: 35129308 [TBL] [Abstract][Full Text] [Related]
20. Fingering inside the coffee ring. Weon BM; Je JH Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013003. PubMed ID: 23410422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]