These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 29310798)

  • 1. Mechanotransduction in Blood and Lymphatic Vascular Development and Disease.
    Urner S; Kelly-Goss M; Peirce SM; Lammert E
    Adv Pharmacol; 2018; 81():155-208. PubMed ID: 29310798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanosensing in developing lymphatic vessels.
    Planas-Paz L; Lammert E
    Adv Anat Embryol Cell Biol; 2014; 214():23-40. PubMed ID: 24276884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endothelial Cell Responses to Biomechanical Forces in Lymphatic Vessels.
    Sabine A; Saygili Demir C; Petrova TV
    Antioxid Redox Signal; 2016 Sep; 25(7):451-65. PubMed ID: 27099026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical forces in lymphatic vascular development and disease.
    Planas-Paz L; Lammert E
    Cell Mol Life Sci; 2013 Nov; 70(22):4341-54. PubMed ID: 23665871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical factors as triggers of vascular growth.
    Hoefer IE; den Adel B; Daemen MJ
    Cardiovasc Res; 2013 Jul; 99(2):276-83. PubMed ID: 23580605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanotransduction activates canonical Wnt/β-catenin signaling to promote lymphatic vascular patterning and the development of lymphatic and lymphovenous valves.
    Cha B; Geng X; Mahamud MR; Fu J; Mukherjee A; Kim Y; Jho EH; Kim TH; Kahn ML; Xia L; Dixon JB; Chen H; Srinivasan RS
    Genes Dev; 2016 Jun; 30(12):1454-69. PubMed ID: 27313318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensation and Mechanotransduction by Lymphatic Endothelial Cells Act as Important Regulators of Lymphatic Development and Function.
    Bálint L; Jakus Z
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33921229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The molecular mechanism of mechanotransduction in vascular homeostasis and disease.
    Yamashiro Y; Yanagisawa H
    Clin Sci (Lond); 2020 Sep; 134(17):2399-2418. PubMed ID: 32936305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanotransduction in embryonic vascular development.
    Roman BL; Pekkan K
    Biomech Model Mechanobiol; 2012 Nov; 11(8):1149-68. PubMed ID: 22744845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FOXC2 and fluid shear stress stabilize postnatal lymphatic vasculature.
    Sabine A; Bovay E; Demir CS; Kimura W; Jaquet M; Agalarov Y; Zangger N; Scallan JP; Graber W; Gulpinar E; Kwak BR; Mäkinen T; Martinez-Corral I; Ortega S; Delorenzi M; Kiefer F; Davis MJ; Djonov V; Miura N; Petrova TV
    J Clin Invest; 2015 Oct; 125(10):3861-77. PubMed ID: 26389677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MicroRNAs in flow-dependent vascular remodelling.
    Neth P; Nazari-Jahantigh M; Schober A; Weber C
    Cardiovasc Res; 2013 Jul; 99(2):294-303. PubMed ID: 23612583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical and mechanical signals in the lymphatic vasculature.
    Geng X; Ho YC; Srinivasan RS
    Cell Mol Life Sci; 2021 Aug; 78(16):5903-5923. PubMed ID: 34240226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of mechanotransduction, FOXC2, connexins, and calcineurin signaling in lymphatic valve formation.
    Sabine A; Petrova TV
    Adv Anat Embryol Cell Biol; 2014; 214():67-80. PubMed ID: 24276887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lymphatic collecting vessel maturation and valve morphogenesis.
    Vittet D
    Microvasc Res; 2014 Nov; 96():31-7. PubMed ID: 25020266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Piezo1 incorporates mechanical force signals into the genetic program that governs lymphatic valve development and maintenance.
    Choi D; Park E; Jung E; Cha B; Lee S; Yu J; Kim PM; Lee S; Hong YJ; Koh CJ; Cho CW; Wu Y; Li Jeon N; Wong AK; Shin L; Kumar SR; Bermejo-Moreno I; Srinivasan RS; Cho IT; Hong YK
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30676326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation.
    Sabine A; Agalarov Y; Maby-El Hajjami H; Jaquet M; Hägerling R; Pollmann C; Bebber D; Pfenniger A; Miura N; Dormond O; Calmes JM; Adams RH; Mäkinen T; Kiefer F; Kwak BR; Petrova TV
    Dev Cell; 2012 Feb; 22(2):430-45. PubMed ID: 22306086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis.
    Petrova TV; Karpanen T; Norrmén C; Mellor R; Tamakoshi T; Finegold D; Ferrell R; Kerjaschki D; Mortimer P; Ylä-Herttuala S; Miura N; Alitalo K
    Nat Med; 2004 Sep; 10(9):974-81. PubMed ID: 15322537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation.
    Nonomura K; Lukacs V; Sweet DT; Goddard LM; Kanie A; Whitwam T; Ranade SS; Fujimori T; Kahn ML; Patapoutian A
    Proc Natl Acad Sci U S A; 2018 Dec; 115(50):12817-12822. PubMed ID: 30482854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive features of angiogenesis and lymphangiogenesis determine their functionality during de novo tumor development.
    Eichten A; Hyun WC; Coussens LM
    Cancer Res; 2007 Jun; 67(11):5211-20. PubMed ID: 17545601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular biology and pathology of lymphangiogenesis.
    Karpanen T; Alitalo K
    Annu Rev Pathol; 2008; 3():367-97. PubMed ID: 18039141
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.