These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
76 related articles for article (PubMed ID: 2931117)
1. Stoichiometric and electrostatic characterization of calcium binding to native and lipid-substituted adenosinetriphosphatase of sarcoplasmic reticulum. Scofano H; Barrabin H; Inesi G; Cohen JA Biochim Biophys Acta; 1985 Sep; 819(1):93-104. PubMed ID: 2931117 [TBL] [Abstract][Full Text] [Related]
2. Formation of magnesium-phosphoenzyme and magnesium-calcium-phosphoenzyme in the phosphorylation of adenosine triphosphatase by orthophosphate in sarcoplasmic reticulum. Models of a reaction sequence. Suko J; Plank B; Preis P; Kolassa N; Hellmann G; Conca W Eur J Biochem; 1981 Oct; 119(2):225-36. PubMed ID: 6458492 [TBL] [Abstract][Full Text] [Related]
3. Interaction of magnesium and inorganic phosphate with calcium-deprived sarcoplasmic reticulum adenosinetriphosphatase as reflected by organic solvent induced perturbation. Champeil P; Guillain F; Vénien C; Gingold MP Biochemistry; 1985 Jan; 24(1):69-81. PubMed ID: 3158341 [TBL] [Abstract][Full Text] [Related]
4. Fluorometric titration of the sarcoplasmic reticulum adenosinetriphosphatase calcium sites in the presence of vanadate. Fernández Belda F; García de Ancos J; Inesi G Biochim Biophys Acta; 1986 Jan; 854(2):257-64. PubMed ID: 2935192 [TBL] [Abstract][Full Text] [Related]
5. The effect of lithium and potassium on the transient state kinetics of the (Ca + Mg)-ATPase of cardiac sarcoplasmic reticulum. Briggs FN; Wise RM; Hearn JA J Biol Chem; 1978 Sep; 253(17):5884-5. PubMed ID: 150415 [TBL] [Abstract][Full Text] [Related]
6. The effects of storage of sarcoplasmic reticulum fragments on the Ca2+, Mg2+-ATPase. Nakamura J; Konishi K J Biochem; 1978 Jun; 83(6):1731-5. PubMed ID: 149789 [TBL] [Abstract][Full Text] [Related]
7. Dependence on membrane lipids of the effect of vanadate on calcium and ATP binding to sarcoplasmic reticulum ATPase. Medda P; Hasselbach W Z Naturforsch C Biosci; 1984; 39(11-12):1137-40. PubMed ID: 6241765 [TBL] [Abstract][Full Text] [Related]
8. pH-dependent inhibitory effects of Ca2+, Mg2+, and K+ on Ca2+ efflux mediated by sarcoplasmic reticulum ATPase. Wolosker H; de Meis L Am J Physiol; 1994 May; 266(5 Pt 1):C1376-81. PubMed ID: 8203500 [TBL] [Abstract][Full Text] [Related]
9. The functional unit of calcium-plus-magnesium-ion-dependent adenosine triphosphatase from sarcoplasmic reticulum. The aggregational state of the deoxycholate-solubilized protein in an enzymically active form. Jørgensen KE; Lind KE; Røigaard-Petersen H; Møller JV Biochem J; 1978 Mar; 169(3):489-98. PubMed ID: 148271 [TBL] [Abstract][Full Text] [Related]
10. Modulation of the hydrolysis rate of the ADP-insensitive phosphoenzyme of the sarcoplasmic reticulum ATPase by H+ and Mg2+. Wakabayashi S; Ogurusu T; Shigekawa M J Biol Chem; 1987 Jul; 262(19):9121-9. PubMed ID: 2954958 [TBL] [Abstract][Full Text] [Related]
11. The ADP- and Mg2+-reactive calcium complex of the phosphoenzyme in skeletal sarcoplasmic reticulum Ca2+-ATPase. Nakamura J Biochim Biophys Acta; 1983 May; 723(2):182-90. PubMed ID: 6221757 [TBL] [Abstract][Full Text] [Related]
12. Highly purified sarcoplasmic reticulum vesicles are devoid of Ca2+-independent ('basal') ATPase activity. Fernandez JL; Rosemblatt M; Hidalgo C Biochim Biophys Acta; 1980 Jul; 599(2):552-68. PubMed ID: 6105877 [TBL] [Abstract][Full Text] [Related]
13. Resistance of Ca2+-ATPase to dilution by excess phospholipid in reconstituted vesicles. Konigsberg PJ Biochim Biophys Acta; 1982 Mar; 685(3):355-66. PubMed ID: 6461357 [TBL] [Abstract][Full Text] [Related]
14. The mechanism of increase in the ATPase activity of sarcoplasmic reticulum vesicles treated with n-alcohols. Hara K; Kasai M J Biochem; 1977 Oct; 82(4):1005-17. PubMed ID: 144724 [TBL] [Abstract][Full Text] [Related]
15. Direct fluorescence measurements of Mg2+ binding to sarcoplasmic reticulum ATPase. Guillain F; Gingold MP; Champeil P J Biol Chem; 1982 Jul; 257(13):7366-71. PubMed ID: 6211442 [TBL] [Abstract][Full Text] [Related]
16. Calcium and lanthanide binding in the sarcoplasmic reticulum ATPase. Squier TC; Bigelow DJ; Fernandez-Belda FJ; deMeis L; Inesi G J Biol Chem; 1990 Aug; 265(23):13713-20. PubMed ID: 2143189 [TBL] [Abstract][Full Text] [Related]
17. Sequential mechanism of calcium binding and translocation in sarcoplasmic reticulum adenosine triphosphatase. Inesi G J Biol Chem; 1987 Dec; 262(34):16338-42. PubMed ID: 2960677 [TBL] [Abstract][Full Text] [Related]
18. Mg2+ and ATP effects on K+ activation of the Ca2+-transport ATPase of cardiac sarcoplasmic reticulum. Jones LR Biochim Biophys Acta; 1979 Oct; 557(1):230-42. PubMed ID: 162038 [TBL] [Abstract][Full Text] [Related]
19. Allosteric modification by K+ of the (Ca2+ + Mg2+)-dependent ATPase of sarcoplasmic reticulum. Interaction with Mg2+. Ribeiro JM; Vianna AL J Biol Chem; 1978 May; 253(9):3153-7. PubMed ID: 147872 [No Abstract] [Full Text] [Related]
20. The formation of phosphoenzyme of sarcoplasmic reticulum. Requirement for membrane-bound Ca2+. Nakamura J; Endo Y; Konishi K Biochim Biophys Acta; 1977 Dec; 471(2):260-72. PubMed ID: 144531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]