These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 29311214)
1. Analytical solutions of mushy layer equations describing directional solidification in the presence of nucleation. Alexandrov DV; Ivanov AA; Alexandrova IV Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311214 [TBL] [Abstract][Full Text] [Related]
2. A complete analytical solution of the Fokker-Planck and balance equations for nucleation and growth of crystals. Makoveeva EV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311216 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear dynamics of mushy layers induced by external stochastic fluctuations. Alexandrov DV; Bashkirtseva IA; Ryashko LB Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311213 [TBL] [Abstract][Full Text] [Related]
4. On the theory of crystal growth in metastable systems with biomedical applications: protein and insulin crystallization. Alexandrov DV; Nizovtseva IG Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180214. PubMed ID: 30827215 [TBL] [Abstract][Full Text] [Related]
5. The effect of density changes on crystallization with a mushy layer. Nizovtseva IG; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190248. PubMed ID: 32279628 [TBL] [Abstract][Full Text] [Related]
6. Dynamical law of the phase interface motion in the presence of crystals nucleation. Toropova LV; Alexandrov DV Sci Rep; 2022 Jun; 12(1):10997. PubMed ID: 35768561 [TBL] [Abstract][Full Text] [Related]
7. Effects of nonlinear growth rates of spherical crystals and their withdrawal rate from a crystallizer on the particle-size distribution function. Makoveeva EV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180210. PubMed ID: 30827205 [TBL] [Abstract][Full Text] [Related]
8. Kinetic transition in the order-disorder transformation at a solid/liquid interface. Galenko PK; Nizovtseva IG; Reuther K; Rettenmayr M Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311206 [TBL] [Abstract][Full Text] [Related]
9. Nucleation and growth dynamics of ellipsoidal crystals in metastable liquids. Nikishina MA; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200306. PubMed ID: 34275366 [TBL] [Abstract][Full Text] [Related]
10. Phase transformations in metastable liquids combined with polymerization. Ivanov AA; Alexandrova IV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2019 Apr; 377(2143):20180215. PubMed ID: 30827217 [TBL] [Abstract][Full Text] [Related]
11. Analytical solution of a binary melt solidification model in the presence of a quasi-equilibrium mushy region for the case of the non-linear phase diagram. Nizovtseva IG; Starodumov IO; Alexandrov DV J Phys Condens Matter; 2020 Jul; 32(30):304003. PubMed ID: 32213674 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of particulate assemblages in metastable liquids: a test of theory with nucleation and growth kinetics. Alexandrova IV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2020 May; 378(2171):20190245. PubMed ID: 32279636 [TBL] [Abstract][Full Text] [Related]
13. From atomistic interfaces to dendritic patterns. Galenko PK; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311208 [TBL] [Abstract][Full Text] [Related]
14. Travelling-wave amplitudes as solutions of the phase-field crystal equation. Nizovtseva IG; Galenko PK Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311201 [TBL] [Abstract][Full Text] [Related]
15. Numerical modeling of solid-cluster evolution applied to the nanosecond solidification of water near the metastable limit. Sterbentz DM; Myint PC; Delplanque JP; Belof JL J Chem Phys; 2019 Oct; 151(16):164501. PubMed ID: 31675853 [TBL] [Abstract][Full Text] [Related]
16. Mushy-layer growth and convection, with application to sea ice. Wells AJ; Hitchen JR; Parkinson JRG Philos Trans A Math Phys Eng Sci; 2019 Jun; 377(2146):20180165. PubMed ID: 30982459 [TBL] [Abstract][Full Text] [Related]
17. The boundary integral theory for slow and rapid curved solid/liquid interfaces propagating into binary systems. Galenko PK; Alexandrov DV; Titova EA Philos Trans A Math Phys Eng Sci; 2018 Feb; 376(2113):. PubMed ID: 29311215 [TBL] [Abstract][Full Text] [Related]
18. The role of incoming flow on crystallization of undercooled liquids with a two-phase layer. Alexandrov DV; Toropova LV Sci Rep; 2022 Oct; 12(1):17857. PubMed ID: 36284156 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of particle coarsening with allowance for Ostwald ripening and coagulation. Alexandrov DV J Phys Condens Matter; 2016 Jan; 28(3):035102. PubMed ID: 26732456 [TBL] [Abstract][Full Text] [Related]
20. The influence of non-stationarity and interphase curvature on the growth dynamics of spherical crystals in a metastable liquid. Makoveeva EV; Alexandrov DV Philos Trans A Math Phys Eng Sci; 2021 Sep; 379(2205):20200307. PubMed ID: 34275364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]