BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 29311279)

  • 1. A Robust CRISPR Interference Gene Repression System in Pseudomonas.
    Tan SZ; Reisch CR; Prather KLJ
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311279
    [No Abstract]   [Full Text] [Related]  

  • 2. CRISPR-dCas9-mediated knockdown of prtR, an essential gene in Pseudomonas aeruginosa.
    Xiang L; Qi F; Jiang L; Tan J; Deng C; Wei Z; Jin S; Huang G
    Lett Appl Microbiol; 2020 Oct; 71(4):386-393. PubMed ID: 32506497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens.
    Zhang YM; Zheng L; Xie K
    mSphere; 2023 Feb; 8(1):e0059422. PubMed ID: 36655998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene transcription repression in Clostridium beijerinckii using CRISPR-dCas9.
    Wang Y; Zhang ZT; Seo SO; Lynn P; Lu T; Jin YS; Blaschek HP
    Biotechnol Bioeng; 2016 Dec; 113(12):2739-2743. PubMed ID: 27240718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An expanded CRISPRi toolbox for tunable control of gene expression in Pseudomonas putida.
    Batianis C; Kozaeva E; Damalas SG; Martín-Pascual M; Volke DC; Nikel PI; Martins Dos Santos VAP
    Microb Biotechnol; 2020 Mar; 13(2):368-385. PubMed ID: 32045111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted Transcriptional Repression in Bacteria Using CRISPR Interference (CRISPRi).
    Hawkins JS; Wong S; Peters JM; Almeida R; Qi LS
    Methods Mol Biol; 2015; 1311():349-62. PubMed ID: 25981485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Transcriptional Gene Repression by Type V-A CRISPR-Cpf1 from Eubacterium eligens.
    Kim SK; Kim H; Ahn WC; Park KH; Woo EJ; Lee DH; Lee SG
    ACS Synth Biol; 2017 Jul; 6(7):1273-1282. PubMed ID: 28375596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible Gene Expression Control in Yersinia pestis by Using an Optimized CRISPR Interference System.
    Wang T; Wang M; Zhang Q; Cao S; Li X; Qi Z; Tan Y; You Y; Bi Y; Song Y; Yang R; Du Z
    Appl Environ Microbiol; 2019 Jun; 85(12):. PubMed ID: 30979834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR interference-mediated gene regulation in Pseudomonas putida KT2440.
    Kim SK; Yoon PK; Kim SJ; Woo SG; Rha E; Lee H; Yeom SJ; Kim H; Lee DH; Lee SG
    Microb Biotechnol; 2020 Jan; 13(1):210-221. PubMed ID: 30793496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Xylose-Inducible Expression System and a CRISPR Interference Plasmid for Targeted Knockdown of Gene Expression in Clostridioides difficile.
    Müh U; Pannullo AG; Weiss DS; Ellermeier CD
    J Bacteriol; 2019 Jul; 201(14):. PubMed ID: 30745377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular analysis of the Pseudomonas aeruginosa regulatory genes ptxR and ptxS.
    Colmer JA; Hamood AN
    Can J Microbiol; 2001 Sep; 47(9):820-8. PubMed ID: 11683464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome editing and transcriptional repression in Pseudomonas putida KT2440 via the type II CRISPR system.
    Sun J; Wang Q; Jiang Y; Wen Z; Yang L; Wu J; Yang S
    Microb Cell Fact; 2018 Mar; 17(1):41. PubMed ID: 29534717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A CRISPR Interference System for Efficient and Rapid Gene Knockdown in Caulobacter crescentus.
    Guzzo M; Castro LK; Reisch CR; Guo MS; Laub MT
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different responses of pyoverdine genes to autoinduction in Pseudomonas aeruginosa and the group Pseudomonas fluorescens-Pseudomonas putida.
    Ambrosi C; Leoni L; Visca P
    Appl Environ Microbiol; 2002 Aug; 68(8):4122-6. PubMed ID: 12147517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigating Pseudomonas aeruginosa Gene Function During Pathogenesis Using Mobile-CRISPRi.
    Yu MA; Banta AB; Ward RD; Prasad NK; Kwon MS; Rosenberg OS; Peters JM
    Methods Mol Biol; 2024; 2721():13-32. PubMed ID: 37819512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of dual-inducible duet-expression vectors for tunable gene expression control and CRISPR interference-based gene repression in Pseudomonas putida KT2440.
    Gauttam R; Mukhopadhyay A; Simmons BA; Singer SW
    Microb Biotechnol; 2021 Nov; 14(6):2659-2678. PubMed ID: 34009716
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redirecting Metabolic Flux via Combinatorial Multiplex CRISPRi-Mediated Repression for Isopentenol Production in Escherichia coli.
    Tian T; Kang JW; Kang A; Lee TS
    ACS Synth Biol; 2019 Feb; 8(2):391-402. PubMed ID: 30681833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9, Cpf1 and C2c1/2/3-What's next?
    Nakade S; Yamamoto T; Sakuma T
    Bioengineered; 2017 May; 8(3):265-273. PubMed ID: 28140746
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.