BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 29311280)

  • 1. An AlgU-Regulated Antisense Transcript Encoded within the Pseudomonas syringae
    Markel E; Dalenberg H; Monteil CL; Vinatzer BA; Swingle B
    J Bacteriol; 2018 Apr; 200(7):. PubMed ID: 29311280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AlgU Controls Expression of Virulence Genes in Pseudomonas syringae pv. tomato DC3000.
    Markel E; Stodghill P; Bao Z; Myers CR; Swingle B
    J Bacteriol; 2016 Sep; 198(17):2330-44. PubMed ID: 27325679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas syringae AlgU Downregulates Flagellin Gene Expression, Helping Evade Plant Immunity.
    Bao Z; Wei HL; Ma X; Swingle B
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31740494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FleQ coordinates flagellum-dependent and -independent motilities in Pseudomonas syringae pv. tomato DC3000.
    Nogales J; Vargas P; Farias GA; Olmedilla A; Sanjuán J; Gallegos MT
    Appl Environ Microbiol; 2015 Nov; 81(21):7533-45. PubMed ID: 26296726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ca
    Fishman MR; Zhang J; Bronstein PA; Stodghill P; Filiatrault MJ
    J Bacteriol; 2018 Mar; 200(5):. PubMed ID: 29263098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermo-regulation of genes mediating motility and plant interactions in Pseudomonas syringae.
    Hockett KL; Burch AY; Lindow SE
    PLoS One; 2013; 8(3):e59850. PubMed ID: 23527276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional analysis of the global regulatory networks active in Pseudomonas syringae during leaf colonization.
    Yu X; Lund SP; Greenwald JW; Records AH; Scott RA; Nettleton D; Lindow SE; Gross DC; Beattie GA
    mBio; 2014 Sep; 5(5):e01683-14. PubMed ID: 25182327
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    McGrane R; Beattie GA
    mBio; 2017 Oct; 8(5):. PubMed ID: 29066541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. flhDC, but not fleQ, regulates flagella biogenesis in Azotobacter vinelandii, and is under AlgU and CydR negative control.
    León R; Espín G
    Microbiology (Reading); 2008 Jun; 154(Pt 6):1719-1728. PubMed ID: 18524926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GacA, the response regulator of a two-component system, acts as a master regulator in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors.
    Chatterjee A; Cui Y; Yang H; Collmer A; Alfano JR; Chatterjee AK
    Mol Plant Microbe Interact; 2003 Dec; 16(12):1106-17. PubMed ID: 14651344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in Pseudomonas fluorescens.
    Martínez-Granero F; Navazo A; Barahona E; Redondo-Nieto M; Rivilla R; Martín M
    PLoS One; 2012; 7(2):e31765. PubMed ID: 22363726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae.
    Zhao Y; He SY; Sundin GW
    Mol Plant Microbe Interact; 2006 Jun; 19(6):644-54. PubMed ID: 16776298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In planta transcriptomics reveals conflicts between pattern-triggered immunity and the AlgU sigma factor regulon.
    Wang H; Smith A; Lovelace A; Kvitko BH
    PLoS One; 2022; 17(9):e0274009. PubMed ID: 36048876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Indole-3-Acetic Acid-Regulated Genes in
    Djami-Tchatchou AT; Li ZA; Stodghill P; Filiatrault MJ; Kunkel BN
    J Bacteriol; 2022 Jan; 204(1):e0038021. PubMed ID: 34662236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the PvdS-regulated promoter motif in Pseudomonas syringae pv. tomato DC3000 reveals regulon members and insights regarding PvdS function in other pseudomonads.
    Swingle B; Thete D; Moll M; Myers CR; Schneider DJ; Cartinhour S
    Mol Microbiol; 2008 May; 68(4):871-89. PubMed ID: 18363796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites.
    Yu X; Lund SP; Scott RA; Greenwald JW; Records AH; Nettleton D; Lindow SE; Gross DC; Beattie GA
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):E425-34. PubMed ID: 23319638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pseudomonas syringae coordinates production of a motility-enabling surfactant with flagellar assembly.
    Burch AY; Shimada BK; Mullin SW; Dunlap CA; Bowman MJ; Lindow SE
    J Bacteriol; 2012 Mar; 194(6):1287-98. PubMed ID: 22194459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning uncovers the
    Bajpe H; Rychel K; Lamoureux CR; Sastry AV; Palsson BO
    mSystems; 2023 Oct; 8(5):e0043723. PubMed ID: 37638727
    [No Abstract]   [Full Text] [Related]  

  • 19. NudC Nudix hydrolase from Pseudomonas syringae, but not its counterpart from Pseudomonas aeruginosa, is a novel regulator of intracellular redox balance required for growth, motility and biofilm formation.
    Modzelan M; Kujawa M; Głąbski K; Jagura-Burdzy G; Kraszewska E
    Mol Microbiol; 2014 Sep; 93(5):867-82. PubMed ID: 24989777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide analysis of the FleQ direct regulon in Pseudomonas fluorescens F113 and Pseudomonas putida KT2440.
    Blanco-Romero E; Redondo-Nieto M; Martínez-Granero F; Garrido-Sanz D; Ramos-González MI; Martín M; Rivilla R
    Sci Rep; 2018 Sep; 8(1):13145. PubMed ID: 30177764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.