These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 29311563)

  • 41. Hybrid approach for automatic cephalometric landmark annotation on cone-beam computed tomography volumes.
    Montúfar J; Romero M; Scougall-Vilchis RJ
    Am J Orthod Dentofacial Orthop; 2018 Jul; 154(1):140-150. PubMed ID: 29957312
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A framework for quantification and visualization of segmentation accuracy and variability in 3D lateral ventricle ultrasound images of preterm neonates.
    Chen Y; Qiu W; Kishimoto J; Gao Y; Chan RH; de Ribaupierre S; Fenster A; Chiu B
    Med Phys; 2015 Nov; 42(11):6387-405. PubMed ID: 26520730
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Automatic landmarking of cephalograms.
    Parthasarathy S; Nugent ST; Gregson PG; Fay DF
    Comput Biomed Res; 1989 Jun; 22(3):248-69. PubMed ID: 2721174
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Quantitative analysis of 3-dimensional facial soft tissue photographic images: technical methods and clinical application.
    Nanda V; Gutman B; Bar E; Alghamdi S; Tetradis S; Lusis AJ; Eskin E; Moon W
    Prog Orthod; 2015; 16():21. PubMed ID: 26133934
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reproducibility of Novel Soft-Tissue Landmarks on Three-Dimensional Human Facial Scan Images in Caucasian and Asian.
    Li Z; Giunta RE; Frank K; Schenck TL; Koban KC
    Aesthetic Plast Surg; 2022 Apr; 46(2):719-731. PubMed ID: 34704125
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A method to detect landmark pairs accurately between intra-patient volumetric medical images.
    Yang D; Zhang M; Chang X; Fu Y; Liu S; Li HH; Mutic S; Duan Y
    Med Phys; 2017 Nov; 44(11):5859-5872. PubMed ID: 28834555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Deformation modeling for robust 3D face matching.
    Lu X; Jain A
    IEEE Trans Pattern Anal Mach Intell; 2008 Aug; 30(8):1346-57. PubMed ID: 18566490
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Automatic localization of solid organs on 3D CT images by a collaborative majority voting decision based on ensemble learning.
    Zhou X; Wang S; Chen H; Hara T; Yokoyama R; Kanematsu M; Fujita H
    Comput Med Imaging Graph; 2012 Jun; 36(4):304-13. PubMed ID: 22421130
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Comparison of Three-Dimensional Surface Imaging Systems Using Landmark Analysis.
    Liberton DK; Mishra R; Beach M; Raznahan A; Gahl WA; Manoli I; Lee JS
    J Craniofac Surg; 2019 Sep; 30(6):1869-1872. PubMed ID: 31335576
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ALPACA: A fast and accurate computer vision approach for automated landmarking of three-dimensional biological structures.
    Porto A; Rolfe S; Maga AM
    Methods Ecol Evol; 2021 Nov; 12(11):2129-2144. PubMed ID: 35874971
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The reproducibility of landmarks on three-dimensional images of 4- to 6-year-old children.
    Berneburg M; Schubert C; von Einem C; Schaupp E; Möller M; Göz G
    J Orofac Orthop; 2010 Jul; 71(4):256-64. PubMed ID: 20676812
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3-D Facial Landmark Localization With Asymmetry Patterns and Shape Regression from Incomplete Local Features.
    Sukno FM; Waddington JL; Whelan PF
    IEEE Trans Cybern; 2015 Sep; 45(9):1717-30. PubMed ID: 25314716
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reproducibility of facial soft tissue landmarks on facial images captured on a 3D camera.
    Othman SA; Ahmad R; Mericant AF; Jamaludin M
    Aust Orthod J; 2013 May; 29(1):58-65. PubMed ID: 23785939
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facial asymmetry assessment in adults using three-dimensional surface imaging.
    Patel A; Islam SM; Murray K; Goonewardene MS
    Prog Orthod; 2015; 16():36. PubMed ID: 26490376
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Age verification using random forests on facial 3D landmarks.
    Jandová M; Daňko M; Urbanová P
    Forensic Sci Int; 2021 Jan; 318():110612. PubMed ID: 33285472
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Automatic landmark annotation and dense correspondence registration for 3D human facial images.
    Guo J; Mei X; Tang K
    BMC Bioinformatics; 2013 Jul; 14():232. PubMed ID: 23870191
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A proposal for soft tissue landmarks for craniofacial analysis using 3-dimensional laser scan imaging.
    Baik HS; Lee HJ; Lee KJ
    World J Orthod; 2006; 7(1):7-14. PubMed ID: 16548301
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An automatic facial landmarking for children with rare diseases.
    Hennocq Q; Bongibault T; Bizière M; Delassus O; Douillet M; Cormier-Daire V; Amiel J; Lyonnet S; Marlin S; Rio M; Picard A; Khonsari RH; Garcelon N
    Am J Med Genet A; 2023 May; 191(5):1210-1221. PubMed ID: 36714960
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning.
    Lee SM; Kim HP; Jeon K; Lee SH; Seo JK
    Phys Med Biol; 2019 Feb; 64(5):055002. PubMed ID: 30669128
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D facial landmarks: Inter-operator variability of manual annotation.
    Fagertun J; Harder S; Rosengren A; Moeller C; Werge T; Paulsen RR; Hansen TF
    BMC Med Imaging; 2014 Oct; 14():35. PubMed ID: 25306436
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.