BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 29311700)

  • 1. Phage-host population dynamics promotes prophage acquisition in bacteria with innate immunity.
    Pleška M; Lang M; Refardt D; Levin BR; Guet CC
    Nat Ecol Evol; 2018 Feb; 2(2):359-366. PubMed ID: 29311700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The adaptation of temperate bacteriophages to their host genomes.
    Bobay LM; Rocha EP; Touchon M
    Mol Biol Evol; 2013 Apr; 30(4):737-51. PubMed ID: 23243039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription termination controls prophage maintenance in Escherichia coli genomes.
    Menouni R; Champ S; Espinosa L; Boudvillain M; Ansaldi M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14414-9. PubMed ID: 23940369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genomic Sequencing of High-Efficiency Transducing Streptococcal Bacteriophage A25: Consequences of Escape from Lysogeny.
    McCullor K; Postoak B; Rahman M; King C; McShan WM
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Importance of prophages to evolution and virulence of bacterial pathogens.
    Fortier LC; Sekulovic O
    Virulence; 2013 Jul; 4(5):354-65. PubMed ID: 23611873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. More Evidence of Collusion: a New Prophage-Mediated Viral Defense System Encoded by Mycobacteriophage Sbash.
    Gentile GM; Wetzel KS; Dedrick RM; Montgomery MT; Garlena RA; Jacobs-Sera D; Hatfull GF
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carriage of λ Latent Virus Is Costly for Its Bacterial Host due to Frequent Reactivation in Monoxenic Mouse Intestine.
    De Paepe M; Tournier L; Moncaut E; Son O; Langella P; Petit MA
    PLoS Genet; 2016 Feb; 12(2):e1005861. PubMed ID: 26871586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bacterial 'Grounded' Prophages: Hotspots for Genetic Renovation and Innovation.
    Ramisetty BCM; Sudhakari PA
    Front Genet; 2019; 10():65. PubMed ID: 30809245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defects in RNA polyadenylation impair both lysogenization by and lytic development of Shiga toxin-converting bacteriophages.
    Nowicki D; Bloch S; Nejman-Faleńczyk B; Szalewska-Pałasz A; Węgrzyn A; Węgrzyn G
    J Gen Virol; 2015 Jul; 96(Pt 7):1957-68. PubMed ID: 25711968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of spontaneous induction of lambdoid prophages in Escherichia coli cultures: simple procedures with possible biotechnological applications.
    Czyz A; Los M; Wrobel B; Wegrzyn G
    BMC Biotechnol; 2001; 1():1. PubMed ID: 11316465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Research progress of prophages.
    Chen X; Wei Y; Ji X
    Yi Chuan; 2021 Mar; 43(3):240-248. PubMed ID: 33724208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Eco-evolutionary Model on Surviving Lysogeny Through Grounding and Accumulation of Prophages.
    Sudhakari PA; Ramisetty BCM
    Microb Ecol; 2023 Nov; 86(4):3068-3081. PubMed ID: 37843655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of temperate Lactobacillus gasseri phage LgaI and its impact as prophage on autolysis of its lysogenic host strains.
    Ismail EA; Neve H; Geis A; Heller KJ
    Curr Microbiol; 2009 Jun; 58(6):648-53. PubMed ID: 19296164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A window into lysogeny: revealing temperate phage biology with transcriptomics.
    Owen SV; Canals R; Wenner N; Hammarlöf DL; Kröger C; Hinton JCD
    Microb Genom; 2020 Feb; 6(2):. PubMed ID: 32022660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.
    Wendling CC; Piecyk A; Refardt D; Chibani C; Hertel R; Liesegang H; Bunk B; Overmann J; Roth O
    BMC Evol Biol; 2017 Apr; 17(1):98. PubMed ID: 28399796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysogeny in the oceans: Lessons from cultivated model systems and a reanalysis of its prevalence.
    Tuttle MJ; Buchan A
    Environ Microbiol; 2020 Dec; 22(12):4919-4933. PubMed ID: 32935433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion.
    Brüssow H; Canchaya C; Hardt WD
    Microbiol Mol Biol Rev; 2004 Sep; 68(3):560-602, table of contents. PubMed ID: 15353570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coliphages of the human urinary microbiota.
    Crum E; Merchant Z; Ene A; Miller-Ensminger T; Johnson G; Wolfe AJ; Putonti C
    PLoS One; 2023; 18(4):e0283930. PubMed ID: 37053131
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Functional organization of prophage and lysogeny in Erwinia carotovora with participation of a temperate bacteriophage ZF40].
    Kushkina AI; Tovkach FI
    Mikrobiol Z; 2006; 68(3):21-32. PubMed ID: 16869142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The book of Lambda does not tell us that naturally occurring lysogens of
    Berryhill BA; Garcia R; McCall IC; Manuel JA; Chaudhry W; Petit MA; Levin BR
    Proc Natl Acad Sci U S A; 2023 Mar; 120(11):e2212121120. PubMed ID: 36881631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.