BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 29311746)

  • 1. Hexadirectional coding of visual space in human entorhinal cortex.
    Nau M; Navarro Schröder T; Bellmund JLS; Doeller CF
    Nat Neurosci; 2018 Feb; 21(2):188-190. PubMed ID: 29311746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human entorhinal cortex represents visual space using a boundary-anchored grid.
    Julian JB; Keinath AT; Frazzetta G; Epstein RA
    Nat Neurosci; 2018 Feb; 21(2):191-194. PubMed ID: 29311745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hexadirectional Modulation of Theta Power in Human Entorhinal Cortex during Spatial Navigation.
    Chen D; Kunz L; Wang W; Zhang H; Wang WX; Schulze-Bonhage A; Reinacher PC; Zhou W; Liang S; Axmacher N; Wang L
    Curr Biol; 2018 Oct; 28(20):3310-3315.e4. PubMed ID: 30318350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hexadirectional Modulation of High-Frequency Electrophysiological Activity in the Human Anterior Medial Temporal Lobe Maps Visual Space.
    Staudigl T; Leszczynski M; Jacobs J; Sheth SA; Schroeder CE; Jensen O; Doeller CF
    Curr Biol; 2018 Oct; 28(20):3325-3329.e4. PubMed ID: 30318353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Grid-like Neural Representations Support Olfactory Navigation of a Two-Dimensional Odor Space.
    Bao X; Gjorgieva E; Shanahan LK; Howard JD; Kahnt T; Gottfried JA
    Neuron; 2019 Jun; 102(5):1066-1075.e5. PubMed ID: 31023509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grid-like hexadirectional modulation of human entorhinal theta oscillations.
    Maidenbaum S; Miller J; Stein JM; Jacobs J
    Proc Natl Acad Sci U S A; 2018 Oct; 115(42):10798-10803. PubMed ID: 30282738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules.
    Mosheiff N; Agmon H; Moriel A; Burak Y
    PLoS Comput Biol; 2017 Jun; 13(6):e1005597. PubMed ID: 28628647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental Barriers Disrupt Grid-like Representations in Humans during Navigation.
    He Q; Brown TI
    Curr Biol; 2019 Aug; 29(16):2718-2722.e3. PubMed ID: 31378608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distance and Direction Codes Underlie Navigation of a Novel Semantic Space in the Human Brain.
    Viganò S; Piazza M
    J Neurosci; 2020 Mar; 40(13):2727-2736. PubMed ID: 32060171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can we study 3D grid codes non-invasively in the human brain? Methodological considerations and fMRI findings.
    Kim M; Maguire EA
    Neuroimage; 2019 Feb; 186():667-678. PubMed ID: 30481593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for grid-cell-like activity in the time domain.
    Peters-Founshtein G; Dafni-Merom A; Monsa R; Arzy S
    Neuropsychologia; 2024 Jun; 198():108878. PubMed ID: 38574806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entorhinal velocity signals reflect environmental geometry.
    Munn RGK; Mallory CS; Hardcastle K; Chetkovich DM; Giocomo LM
    Nat Neurosci; 2020 Feb; 23(2):239-251. PubMed ID: 31932764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial cell firing during virtual navigation of open arenas by head-restrained mice.
    Chen G; King JA; Lu Y; Cacucci F; Burgess N
    Elife; 2018 Jun; 7():. PubMed ID: 29911974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of a non-spatial dimension by the hippocampal-entorhinal circuit.
    Aronov D; Nevers R; Tank DW
    Nature; 2017 Mar; 543(7647):719-722. PubMed ID: 28358077
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of reward on electrophysiological signatures of grid cell population activity in human spatial navigation.
    Wang W; Wang W
    Sci Rep; 2021 Dec; 11(1):23577. PubMed ID: 34880356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entorhinal cortex receptive fields are modulated by spatial attention, even without movement.
    Wilming N; König P; König S; Buffalo EA
    Elife; 2018 Mar; 7():. PubMed ID: 29537964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Remembered reward locations restructure entorhinal spatial maps.
    Butler WN; Hardcastle K; Giocomo LM
    Science; 2019 Mar; 363(6434):1447-1452. PubMed ID: 30923222
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are Grid-Like Representations a Component of All Perception and Cognition?
    Chen ZS; Zhang X; Long X; Zhang SJ
    Front Neural Circuits; 2022; 16():924016. PubMed ID: 35911570
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new direction for grid cells.
    Cheng K
    Learn Behav; 2016 Mar; 44(1):2-3. PubMed ID: 26489643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Grid-cell representations in mental simulation.
    Bellmund JL; Deuker L; Navarro Schröder T; Doeller CF
    Elife; 2016 Aug; 5():. PubMed ID: 27572056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.