BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 29311773)

  • 1. Rostro-Caudal and Caudo-Rostral Migrations in the Telencephalon: Going Forward or Backward?
    Ruiz-Reig N; Studer M
    Front Neurosci; 2017; 11():692. PubMed ID: 29311773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Origin and Migration of Olfactory Cajal-Retzius Cells.
    Frade-Pérez MD; Miquelajáuregui A; Varela-Echavarría A
    Front Neuroanat; 2017; 11():97. PubMed ID: 29163070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications.
    Quintana-Urzainqui I; Rodríguez-Moldes I; Mazan S; Candal E
    Brain Struct Funct; 2015 Sep; 220(5):2905-26. PubMed ID: 25079345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attractive action of FGF-signaling contributes to the postnatal developing hippocampus.
    Cuccioli V; Bueno C; Belvindrah R; Lledo PM; Martinez S
    Hippocampus; 2015 Apr; 25(4):486-99. PubMed ID: 25348908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The avian telencephalic subpallium originates inhibitory neurons that invade tangentially the pallium (dorsal ventricular ridge and cortical areas).
    Cobos I; Puelles L; Martínez S
    Dev Biol; 2001 Nov; 239(1):30-45. PubMed ID: 11784017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radial and tangential migration of telencephalic somatostatin neurons originated from the mouse diagonal area.
    Puelles L; Morales-Delgado N; Merchán P; Castro-Robles B; Martínez-de-la-Torre M; Díaz C; Ferran JL
    Brain Struct Funct; 2016 Jul; 221(6):3027-65. PubMed ID: 26189100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunohistochemical study of the telencephalon of the African lungfish, Protopterus annectens.
    Reiner A; Northcutt RG
    J Comp Neurol; 1987 Feb; 256(3):463-81. PubMed ID: 2437161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Telencephalic sources of the afferents of the main olfactory bulb in the frog Rana temporaria].
    Ragimova NG; Kratskin IL
    Zh Evol Biokhim Fiziol; 1984; 20(4):380-5. PubMed ID: 6385573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments.
    Moreno N; González A; Rétaux S
    Dev Neurobiol; 2008 Mar; 68(4):504-20. PubMed ID: 18214835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional regulation of tangential neuronal migration in the developing forebrain.
    Chédotal A; Rijli FM
    Curr Opin Neurobiol; 2009 Apr; 19(2):139-45. PubMed ID: 19428236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular control of two novel migratory paths for CGE-derived interneurons in the developing mouse brain.
    Touzot A; Ruiz-Reig N; Vitalis T; Studer M
    Development; 2016 May; 143(10):1753-65. PubMed ID: 27034423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Doublecortin expression in the adult rat telencephalon.
    Nacher J; Crespo C; McEwen BS
    Eur J Neurosci; 2001 Aug; 14(4):629-44. PubMed ID: 11556888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory and amygdalar structures of the chicken ventral pallium based on the combinatorial expression patterns of LIM and other developmental regulatory genes.
    Abellán A; Legaz I; Vernier B; Rétaux S; Medina L
    J Comp Neurol; 2009 Sep; 516(3):166-86. PubMed ID: 19598282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rate and pattern of migration of lineally-related olfactory bulb interneurons generated postnatally in the subventricular zone of the rat.
    Luskin MB; Boone MS
    Chem Senses; 1994 Dec; 19(6):695-714. PubMed ID: 7735848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon.
    Adolf B; Chapouton P; Lam CS; Topp S; Tannhäuser B; Strähle U; Götz M; Bally-Cuif L
    Dev Biol; 2006 Jul; 295(1):278-93. PubMed ID: 16828638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DMRT5, DMRT3, and EMX2 Cooperatively Repress
    Desmaris E; Keruzore M; Saulnier A; Ratié L; Assimacopoulos S; De Clercq S; Nan X; Roychoudhury K; Qin S; Kricha S; Chevalier C; Lingner T; Henningfeld KA; Zarkower D; Mallamaci A; Theil T; Campbell K; Pieler T; Li M; Grove EA; Bellefroid EJ
    J Neurosci; 2018 Oct; 38(42):9105-9121. PubMed ID: 30143575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The connections of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase.
    Shipley MT; Adamek GD
    Brain Res Bull; 1984 Jun; 12(6):669-88. PubMed ID: 6206930
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Astrocytes in the Generation, Migration, and Integration of New Neurons in the Adult Olfactory Bulb.
    Gengatharan A; Bammann RR; Saghatelyan A
    Front Neurosci; 2016; 10():149. PubMed ID: 27092050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The telencephalic vesicles are innervated by olfactory placode-derived cells: a possible mechanism to induce neocortical development.
    De Carlos JA; López-Mascaraque L; Valverde F
    Neuroscience; 1995 Oct; 68(4):1167-78. PubMed ID: 8544990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective disarrangement of the rostral telencephalic cholinergic system in heterozygous reeler mice.
    Sigala S; Zoli M; Palazzolo F; Faccoli S; Zanardi A; Mercuri NB; Spano P
    Neuroscience; 2007 Feb; 144(3):834-44. PubMed ID: 17112676
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.