These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29311774)

  • 1. Learning to Generate Sequences with Combination of Hebbian and Non-hebbian Plasticity in Recurrent Spiking Neural Networks.
    Panda P; Roy K
    Front Neurosci; 2017; 11():693. PubMed ID: 29311774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traces of semantization - from episodic to semantic memory in a spiking cortical network model.
    Chrysanthidis N; Fiebig F; Lansner A; Herman P
    eNeuro; 2022 Jul; 9(4):. PubMed ID: 35803714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
    Olde Scheper TV; Meredith RM; Mansvelder HD; van Pelt J; van Ooyen A
    Front Comput Neurosci; 2017; 11():119. PubMed ID: 29375358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recall tempo of Hebbian sequences depends on the interplay of Hebbian kernel with tutor signal timing.
    Farrell M; Pehlevan C
    Proc Natl Acad Sci U S A; 2024 Aug; 121(32):e2309876121. PubMed ID: 39078676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Spiking Working Memory Model Based on Hebbian Short-Term Potentiation.
    Fiebig F; Lansner A
    J Neurosci; 2017 Jan; 37(1):83-96. PubMed ID: 28053032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Emergence of symmetric, modular, and reciprocal connections in recurrent networks with Hebbian learning.
    Hua SE; Houk JC; Mussa-Ivaldi FA
    Biol Cybern; 1999 Sep; 81(3):211-25. PubMed ID: 10473846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presynaptic inhibition rapidly stabilises recurrent excitation in the face of plasticity.
    Naumann LB; Sprekeler H
    PLoS Comput Biol; 2020 Aug; 16(8):e1008118. PubMed ID: 32764742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anti-hebbian spike-timing-dependent plasticity and adaptive sensory processing.
    Roberts PD; Leen TK
    Front Comput Neurosci; 2010; 4():156. PubMed ID: 21228915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RM-SORN: a reward-modulated self-organizing recurrent neural network.
    Aswolinskiy W; Pipa G
    Front Comput Neurosci; 2015; 9():36. PubMed ID: 25852533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Developmental control of spike-timing-dependent plasticity by tonic GABAergic signaling in striatum.
    Valtcheva S; Paillé V; Dembitskaya Y; Perez S; Gangarossa G; Fino E; Venance L
    Neuropharmacology; 2017 Jul; 121():261-277. PubMed ID: 28408325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing dependent plasticity and the cognitive map.
    Bush D; Philippides A; Husbands P; O'Shea M
    Front Comput Neurosci; 2010; 4():142. PubMed ID: 21060719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of the Number of Spiking Neurons on Synaptic Plasticity.
    Uleru GI; Hulea M; Barleanu A
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36648814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Developmental Switch for Hebbian Plasticity.
    Martens MB; Celikel T; Tiesinga PH
    PLoS Comput Biol; 2015 Jul; 11(7):e1004386. PubMed ID: 26172394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networks.
    Zenke F; Agnes EJ; Gerstner W
    Nat Commun; 2015 Apr; 6():6922. PubMed ID: 25897632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration in neo-Hebbian reinforcement learning: Computational approaches to the exploration-exploitation balance with bio-inspired neural networks.
    Triche A; Maida AS; Kumar A
    Neural Netw; 2022 Jul; 151():16-33. PubMed ID: 35367735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the site of synaptic competition and the balance of learning forces for Hebbian encoding of probabilistic Markov sequences.
    Bouchard KE; Ganguli S; Brainard MS
    Front Comput Neurosci; 2015; 9():92. PubMed ID: 26257637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.