These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29311774)

  • 41. A Hypothetical Model Concerning How Spike-Timing-Dependent Plasticity Contributes to Neural Circuit Formation and Initiation of the Critical Period in Barrel Cortex.
    Kimura F; Itami C
    J Neurosci; 2019 May; 39(20):3784-3791. PubMed ID: 30877173
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Incorporating structural plasticity into self-organization recurrent networks for sequence learning.
    Yuan Y; Zhu Y; Wang J; Li R; Xu X; Fang T; Huo H; Wan L; Li Q; Liu N; Yang S
    Front Neurosci; 2023; 17():1224752. PubMed ID: 37592946
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Olfactory learning and spike timing dependent plasticity.
    Ito I; Ong RC; Raman B; Stopfer M
    Commun Integr Biol; 2008; 1(2):170-1. PubMed ID: 19704883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spatial Properties of STDP in a Self-Learning Spiking Neural Network Enable Controlling a Mobile Robot.
    Lobov SA; Mikhaylov AN; Shamshin M; Makarov VA; Kazantsev VB
    Front Neurosci; 2020; 14():88. PubMed ID: 32174804
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hebbian and neuromodulatory mechanisms interact to trigger associative memory formation.
    Johansen JP; Diaz-Mataix L; Hamanaka H; Ozawa T; Ycu E; Koivumaa J; Kumar A; Hou M; Deisseroth K; Boyden ES; LeDoux JE
    Proc Natl Acad Sci U S A; 2014 Dec; 111(51):E5584-92. PubMed ID: 25489081
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Self-influencing synaptic plasticity: recurrent changes of synaptic weights can lead to specific functional properties.
    Tamosiunaite M; Porr B; Wörgötter F
    J Comput Neurosci; 2007 Aug; 23(1):113-27. PubMed ID: 17265145
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spike-timing-dependent Hebbian plasticity as temporal difference learning.
    Rao RP; Sejnowski TJ
    Neural Comput; 2001 Oct; 13(10):2221-37. PubMed ID: 11570997
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Muscarinic acetylcholine receptors control baseline activity and Hebbian stimulus timing-dependent plasticity in fusiform cells of the dorsal cochlear nucleus.
    Stefanescu RA; Shore SE
    J Neurophysiol; 2017 Mar; 117(3):1229-1238. PubMed ID: 28003407
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Closed-Form Treatment of the Interactions between Neuronal Activity and Timing-Dependent Plasticity in Networks of Linear Neurons.
    Kolodziejski C; Tetzlaff C; Wörgötter F
    Front Comput Neurosci; 2010; 4():134. PubMed ID: 21152348
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synaptic retinoic acid receptor signaling mediates mTOR-dependent metaplasticity that controls hippocampal learning.
    Hsu YT; Li J; Wu D; Südhof TC; Chen L
    Proc Natl Acad Sci U S A; 2019 Apr; 116(14):7113-7122. PubMed ID: 30782829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.
    Ruan H; Yao WD
    J Neurosci; 2017 Jan; 37(4):986-997. PubMed ID: 28123030
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Homeostatic Plasticity Achieved by Incorporation of Random Fluctuations and Soft-Bounded Hebbian Plasticity in Excitatory Synapses.
    Matsubara T; Uehara K
    Front Neural Circuits; 2016; 10():42. PubMed ID: 27313513
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinct Heterosynaptic Plasticity in Fast Spiking and Non-Fast-Spiking Inhibitory Neurons in Rat Visual Cortex.
    Chistiakova M; Ilin V; Roshchin M; Bannon N; Malyshev A; Kisvárday Z; Volgushev M
    J Neurosci; 2019 Aug; 39(35):6865-6878. PubMed ID: 31300522
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Learning a sparse code for temporal sequences using STDP and sequence compression.
    Byrnes S; Burkitt AN; Grayden DB; Meffin H
    Neural Comput; 2011 Oct; 23(10):2567-98. PubMed ID: 21732857
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition.
    Kasabov N; Dhoble K; Nuntalid N; Indiveri G
    Neural Netw; 2013 May; 41():188-201. PubMed ID: 23340243
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model of human motor sequence learning explains facilitation and interference effects based on spike-timing dependent plasticity.
    Wang Q; Rothkopf CA; Triesch J
    PLoS Comput Biol; 2017 Aug; 13(8):e1005632. PubMed ID: 28767646
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Turing complete neural computation based on synaptic plasticity.
    Cabessa J
    PLoS One; 2019; 14(10):e0223451. PubMed ID: 31618230
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Models of Metaplasticity: A Review of Concepts.
    Yger P; Gilson M
    Front Comput Neurosci; 2015; 9():138. PubMed ID: 26617512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.