These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29311879)

  • 1. Food-Related Odors Activate Dopaminergic Brain Areas.
    Sorokowska A; Schoen K; Hummel C; Han P; Warr J; Hummel T
    Front Hum Neurosci; 2017; 11():625. PubMed ID: 29311879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Food-related odor probes of brain reward circuits during hunger: a pilot FMRI study.
    Bragulat V; Dzemidzic M; Bruno C; Cox CA; Talavage T; Considine RV; Kareken DA
    Obesity (Silver Spring); 2010 Aug; 18(8):1566-71. PubMed ID: 20339365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dysfunction of the
    Jiang T; Soussignan R; Carrier E; Royet JP
    Front Hum Neurosci; 2019; 13():117. PubMed ID: 31019456
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats.
    Perry RE; Al Aïn S; Raineki C; Sullivan RM; Wilson DA
    J Neurosci; 2016 Jun; 36(25):6634-50. PubMed ID: 27335397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hedonic appreciation and verbal description of pleasant and unpleasant odors in untrained, trainee cooks, flavorists, and perfumers.
    Sezille C; Fournel A; Rouby C; Rinck F; Bensafi M
    Front Psychol; 2014; 5():12. PubMed ID: 24478743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differences in the central-nervous processing of olfactory stimuli according to their hedonic and arousal characteristics.
    Sorokowska A; Negoias S; Härtwig S; Gerber J; Iannilli E; Warr J; Hummel T
    Neuroscience; 2016 Jun; 324():62-8. PubMed ID: 26968764
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alliesthesia is greater for odors of fatty foods than of non-fat foods.
    Plailly J; Luangraj N; Nicklaus S; Issanchou S; Royet JP; Sulmont-Rossé C
    Appetite; 2011 Dec; 57(3):615-22. PubMed ID: 21801771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Habitual Exposure to Trigeminal Stimuli and Its Effects on the Processing of Chemosensory Stimuli.
    Joshi A; Thaploo D; Yan X; Zang Y; Warr J; Hummel T
    Neuroscience; 2021 Aug; 470():70-77. PubMed ID: 34274425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional MRI of congenital hyposmia: brain activation to odors and imagination of odors and tastes.
    Henkin RI; Levy LM
    J Comput Assist Tomogr; 2002; 26(1):39-61. PubMed ID: 11801904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. fMRI of emotional responses to odors: influence of hedonic valence and judgment, handedness, and gender.
    Royet JP; Plailly J; Delon-Martin C; Kareken DA; Segebarth C
    Neuroimage; 2003 Oct; 20(2):713-28. PubMed ID: 14568446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered olfactory processing of stress-related body odors and artificial odors in patients with panic disorder.
    Wintermann GB; Donix M; Joraschky P; Gerber J; Petrowski K
    PLoS One; 2013; 8(9):e74655. PubMed ID: 24086358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation between Ventromedial Prefrontal Cortex Activation to Food Aromas and Cue-driven Eating: An fMRI Study.
    Eiler WJ; Dzemidzic M; Case KR; Considine RV; Kareken DA
    Chemosens Percept; 2012 Mar; 5(1):27-36. PubMed ID: 25485031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Now you like me, now you don't: impact of labels on odor perception.
    Manescu S; Frasnelli J; Lepore F; Djordjevic J
    Chem Senses; 2014 Feb; 39(2):167-75. PubMed ID: 24336680
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Brain Reward Responsivity to Food-Related Odors in Obesity.
    Han P; Roitzsch C; Horstmann A; Pössel M; Hummel T
    Obesity (Silver Spring); 2021 Jul; 29(7):1138-1145. PubMed ID: 33913254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bimodal odor processing with a trigeminal component at sub- and suprathreshold levels.
    Pellegrino R; Drechsler E; Hummel C; Warr J; Hummel T
    Neuroscience; 2017 Nov; 363():43-49. PubMed ID: 28739522
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of food odors signaling specific taste qualities and macronutrient content on saliva secretion and composition.
    Morquecho-Campos P; Bikker FJ; Nazmi K; de Graaf K; Laine ML; Boesveldt S
    Appetite; 2019 Dec; 143():104399. PubMed ID: 31401237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fish is bad: Negative food odors elicit faster and more accurate reactions than other odors.
    Boesveldt S; Frasnelli J; Gordon AR; Lundström JN
    Biol Psychol; 2010 May; 84(2):313-7. PubMed ID: 20227457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The neural substrates responsible for food odor processing: an activation likelihood estimation meta-analysis.
    Oka N; Iwai K; Sakai H
    Front Neurosci; 2023; 17():1191617. PubMed ID: 37424999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual odor qualities predict successful odor identification in old age.
    Lindroos R; Raj R; Pierzchajlo S; Hörberg T; Herman P; Challma S; Hummel T; Larsson M; Laukka EJ; Olofsson JK
    Chem Senses; 2022 Jan; 47():. PubMed ID: 36334272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral texture influences the neural processing of ortho- and retronasal odors in humans.
    Iannilli E; Bult JH; Roudnitzky N; Gerber J; de Wijk RA; Hummel T
    Brain Res; 2014 Oct; 1587():77-87. PubMed ID: 25175838
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.