These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29311887)

  • 1. Investigation of True High Frequency Electrical Substrates of fMRI-Based Resting State Networks Using Parallel Independent Component Analysis of Simultaneous EEG/fMRI Data.
    Kyathanahally SP; Wang Y; Calhoun VD; Deshpande G
    Front Neuroinform; 2017; 11():74. PubMed ID: 29311887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of the brain at rest--exploring EEG microstates as electrophysiological signatures of BOLD resting state networks.
    Yuan H; Zotev V; Phillips R; Drevets WC; Bodurka J
    Neuroimage; 2012 May; 60(4):2062-72. PubMed ID: 22381593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brain-wide mapping of resting-state networks in mice using high-frame rate functional ultrasound.
    Hikishima K; Tsurugizawa T; Kasahara K; Takagi R; Yoshinaka K; Nitta N
    Neuroimage; 2023 Oct; 279():120297. PubMed ID: 37500027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.
    Yuan H; Ding L; Zhu M; Zotev V; Phillips R; Bodurka J
    Brain Connect; 2016 Mar; 6(2):122-35. PubMed ID: 26414793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BOLD correlates of EEG topography reveal rapid resting-state network dynamics.
    Britz J; Van De Ville D; Michel CM
    Neuroimage; 2010 Oct; 52(4):1162-70. PubMed ID: 20188188
    [TBL] [Abstract][Full Text] [Related]  

  • 6. EEG microstates are correlated with brain functional networks during slow-wave sleep.
    Xu J; Pan Y; Zhou S; Zou G; Liu J; Su Z; Zou Q; Gao JH
    Neuroimage; 2020 Jul; 215():116786. PubMed ID: 32276057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Resting Spatio-Temporal Dynamics of a Neural Mass Model Using Resting fMRI Connectivity and EEG Microstates.
    Endo H; Hiroe N; Yamashita O
    Front Comput Neurosci; 2019; 13():91. PubMed ID: 32009922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuations of the EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode network.
    Keinänen T; Rytky S; Korhonen V; Huotari N; Nikkinen J; Tervonen O; Palva JM; Kiviniemi V
    J Neurosci Res; 2018 Oct; 96(10):1689-1698. PubMed ID: 29761531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shifted coupling of EEG driving frequencies and fMRI resting state networks in schizophrenia spectrum disorders.
    Razavi N; Jann K; Koenig T; Kottlow M; Hauf M; Strik W; Dierks T
    PLoS One; 2013; 8(10):e76604. PubMed ID: 24124576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Quest for EEG Power Band Correlation with ICA Derived fMRI Resting State Networks.
    Meyer MC; Janssen RJ; Van Oort ES; Beckmann CF; Barth M
    Front Hum Neurosci; 2013; 7():315. PubMed ID: 23805098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in resting connectivity with age: a simultaneous electroencephalogram and functional magnetic resonance imaging investigation.
    Balsters JH; O'Connell RG; Galli A; Nolan H; Greco E; Kilcullen SM; Bokde AL; Lai R; Upton N; Robertson IH
    Neurobiol Aging; 2013 Sep; 34(9):2194-207. PubMed ID: 23608113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a complete taxonomy of resting state networks across wakefulness and sleep: an assessment of spatially distinct resting state networks using independent component analysis.
    Houldin E; Fang Z; Ray LB; Owen AM; Fogel SM
    Sleep; 2019 Mar; 42(3):. PubMed ID: 30476346
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topographic electrophysiological signatures of FMRI Resting State Networks.
    Jann K; Kottlow M; Dierks T; Boesch C; Koenig T
    PLoS One; 2010 Sep; 5(9):e12945. PubMed ID: 20877577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Canonical EEG microstates transitions reflect switching among BOLD resting state networks and predict fMRI signal.
    Al Zoubi O; Mayeli A; Misaki M; Tsuchiyagaito A; Zotev V; Refai H; Paulus M; Bodurka J
    J Neural Eng; 2022 Jan; 18(6):. PubMed ID: 34937003
    [No Abstract]   [Full Text] [Related]  

  • 15. fMRI BOLD Correlates of EEG Independent Components: Spatial Correspondence With the Default Mode Network.
    Prestel M; Steinfath TP; Tremmel M; Stark R; Ott U
    Front Hum Neurosci; 2018; 12():478. PubMed ID: 30542275
    [No Abstract]   [Full Text] [Related]  

  • 16. Adolescent resting state networks and their associations with schizotypal trait expression.
    Lagioia A; Van De Ville D; Debbané M; Lazeyras F; Eliez S
    Front Syst Neurosci; 2010; 4():. PubMed ID: 20844603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spontaneous brain activity and EEG microstates. A novel EEG/fMRI analysis approach to explore resting-state networks.
    Musso F; Brinkmeyer J; Mobascher A; Warbrick T; Winterer G
    Neuroimage; 2010 Oct; 52(4):1149-61. PubMed ID: 20139014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical Statistical Correlation Tomography of EEG Resting State Networks.
    Li C; Yuan H; Shou G; Cha YH; Sunderam S; Besio W; Ding L
    Front Neurosci; 2018; 12():365. PubMed ID: 29899686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. fMRI resting state networks define distinct modes of long-distance interactions in the human brain.
    De Luca M; Beckmann CF; De Stefano N; Matthews PM; Smith SM
    Neuroimage; 2006 Feb; 29(4):1359-67. PubMed ID: 16260155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pushing the Limits of EEG: Estimation of Large-Scale Functional Brain Networks and Their Dynamics Validated by Simultaneous fMRI.
    Abreu R; Simões M; Castelo-Branco M
    Front Neurosci; 2020; 14():323. PubMed ID: 32372908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.