These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 29311888)

  • 21. A Framework for Sensorimotor Cross-Perception and Cross-Behavior Knowledge Transfer for Object Categorization.
    Tatiya G; Hosseini R; Hughes MC; Sinapov J
    Front Robot AI; 2020; 7():522141. PubMed ID: 33501303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strength of Temporal White Matter Pathways Predicts Semantic Learning.
    Ripollés P; Biel D; Peñaloza C; Kaufmann J; Marco-Pallarés J; Noesselt T; Rodríguez-Fornells A
    J Neurosci; 2017 Nov; 37(46):11101-11113. PubMed ID: 29025925
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Word-Object Learning via Visual Exploration in Space (WOLVES): A neural process model of cross-situational word learning.
    Bhat AA; Spencer JP; Samuelson LK
    Psychol Rev; 2022 Jul; 129(4):640-695. PubMed ID: 34435790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Pursuit of Word Meanings.
    Stevens JS; Gleitman LR; Trueswell JC; Yang C
    Cogn Sci; 2017 Apr; 41 Suppl 4(Suppl 4):638-676. PubMed ID: 27666335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot.
    Marocco D; Cangelosi A; Fischer K; Belpaeme T
    Front Neurorobot; 2010; 4():. PubMed ID: 20725503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Learning times for large lexicons through cross-situational learning.
    Blythe RA; Smith K; Smith AD
    Cogn Sci; 2010 May; 34(4):620-42. PubMed ID: 21564227
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot.
    Fischer T; Puigbò JY; Camilleri D; Nguyen PDH; Moulin-Frier C; Lallée S; Metta G; Prescott TJ; Demiris Y; Verschure PFMJ
    Front Robot AI; 2018; 5():22. PubMed ID: 33500909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring the robustness of cross-situational learning under Zipfian distributions.
    Vogt P
    Cogn Sci; 2012; 36(4):726-39. PubMed ID: 22268764
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bootstrapping language acquisition.
    Abend O; Kwiatkowski T; Smith NJ; Goldwater S; Steedman M
    Cognition; 2017 Jul; 164():116-143. PubMed ID: 28412593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tracking Multiple Statistics: Simultaneous Learning of Object Names and Categories in English and Mandarin Speakers.
    Chen CH; Gershkoff-Stowe L; Wu CY; Cheung H; Yu C
    Cogn Sci; 2017 Aug; 41(6):1485-1509. PubMed ID: 27671780
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interactive language learning by robots: the transition from babbling to word forms.
    Lyon C; Nehaniv CL; Saunders J
    PLoS One; 2012; 7(6):e38236. PubMed ID: 22719871
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Bootstrapping Model of Frequency and Context Effects in Word Learning.
    Kachergis G; Yu C; Shiffrin RM
    Cogn Sci; 2017 Apr; 41(3):590-622. PubMed ID: 26988198
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The interplay of cross-situational word learning and sentence-level constraints.
    Koehne J; Crocker MW
    Cogn Sci; 2015 Jul; 39(5):849-89. PubMed ID: 25244041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Word learning under infinite uncertainty.
    Blythe RA; Smith ADM; Smith K
    Cognition; 2016 Jun; 151():18-27. PubMed ID: 26927884
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Consistency of co-occurring actions influences young children's word learning.
    Eiteljoerge SFV; Adam M; Elsner B; Mani N
    R Soc Open Sci; 2019 Aug; 6(8):190097. PubMed ID: 31598229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Observational Word Learning: Beyond Propose-But-Verify and Associative Bean Counting.
    Roembke T; McMurray B
    J Mem Lang; 2016 Apr; 87():105-127. PubMed ID: 26858510
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Competition between multiple words for a referent in cross-situational word learning.
    Benitez VL; Yurovsky D; Smith LB
    J Mem Lang; 2016 Oct; 90():31-48. PubMed ID: 27087742
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Rapid word learning under uncertainty via cross-situational statistics.
    Yu C; Smith LB
    Psychol Sci; 2007 May; 18(5):414-20. PubMed ID: 17576281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.