These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 29311891)

  • 1. Representation Learning of Logic Words by an RNN: From Word Sequences to Robot Actions.
    Yamada T; Murata S; Arie H; Ogata T
    Front Neurorobot; 2017; 11():70. PubMed ID: 29311891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The logic in language: How all quantifiers are alike, but each quantifier is different.
    Feiman R; Snedeker J
    Cogn Psychol; 2016 Jun; 87():29-52. PubMed ID: 27214380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Cognitive Neural Architecture Able to Learn and Communicate through Natural Language.
    Golosio B; Cangelosi A; Gamotina O; Masala GL
    PLoS One; 2015; 10(11):e0140866. PubMed ID: 26560154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning Actions From Natural Language Instructions Using an ON-World Embodied Cognitive Architecture.
    Giorgi I; Cangelosi A; Masala GL
    Front Neurorobot; 2021; 15():626380. PubMed ID: 34054452
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamical Integration of Language and Behavior in a Recurrent Neural Network for Human-Robot Interaction.
    Yamada T; Murata S; Arie H; Ogata T
    Front Neurorobot; 2016; 10():5. PubMed ID: 27471463
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grounding Action Words in the Sensorimotor Interaction with the World: Experiments with a Simulated iCub Humanoid Robot.
    Marocco D; Cangelosi A; Fischer K; Belpaeme T
    Front Neurorobot; 2010; 4():. PubMed ID: 20725503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-Situational Learning with Bayesian Generative Models for Multimodal Category and Word Learning in Robots.
    Taniguchi A; Taniguchi T; Cangelosi A
    Front Neurorobot; 2017; 11():66. PubMed ID: 29311888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning the Meanings of Function Words From Grounded Language Using a Visual Question Answering Model.
    Portelance E; Frank MC; Jurafsky D
    Cogn Sci; 2024 May; 48(5):e13448. PubMed ID: 38742768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bootstrapping language acquisition.
    Abend O; Kwiatkowski T; Smith NJ; Goldwater S; Steedman M
    Cognition; 2017 Jul; 164():116-143. PubMed ID: 28412593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the acquisition and production of grammatical constructions through human-robot interaction with echo state networks.
    Hinaut X; Petit M; Pointeau G; Dominey PF
    Front Neurorobot; 2014; 8():16. PubMed ID: 24834050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of co-speech gestures grounded in word-distributed representation.
    Sasaki K; Nishikawa J; Morita J
    Front Robot AI; 2024; 11():1362463. PubMed ID: 38726067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Long-Term Study of Young Children's Rapport, Social Emulation, and Language Learning With a Peer-Like Robot Playmate in Preschool.
    Kory-Westlund JM; Breazeal C
    Front Robot AI; 2019; 6():81. PubMed ID: 33501096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The grounding of higher order concepts in action and language: a cognitive robotics model.
    Stramandinoli F; Marocco D; Cangelosi A
    Neural Netw; 2012 Aug; 32():165-73. PubMed ID: 22386502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental word grounding through a growing neural network with a humanoid robot.
    He X; Kojima R; Hasegawa O
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):451-62. PubMed ID: 17416171
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Language bootstrapping: learning word meanings from perception-action association.
    Salvi G; Montesano L; Bernardino A; Santos-Victor J
    IEEE Trans Syst Man Cybern B Cybern; 2012 Jun; 42(3):660-71. PubMed ID: 22106152
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the Effects of a Social Robot's Speech Entrainment and Backstory on Young Children's Emotion, Rapport, Relationship, and Learning.
    Kory-Westlund JM; Breazeal C
    Front Robot AI; 2019; 6():54. PubMed ID: 33501069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compositional RL Agents That Follow Language Commands in Temporal Logic.
    Kuo YL; Katz B; Barbu A
    Front Robot AI; 2021; 8():689550. PubMed ID: 34350213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping sensorimotor sequences to word sequences: a connectionist model of language acquisition and sentence generation.
    Takac M; Benuskova L; Knott A
    Cognition; 2012 Nov; 125(2):288-308. PubMed ID: 22863413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
    de Greeff J; Belpaeme T
    PLoS One; 2015; 10(9):e0138061. PubMed ID: 26422143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dependency-based Siamese long short-term memory network for learning sentence representations.
    Zhu W; Yao T; Ni J; Wei B; Lu Z
    PLoS One; 2018; 13(3):e0193919. PubMed ID: 29513748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.