BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 29311926)

  • 1. Targeting the NFAT1-MDM2-MDMX Network Inhibits the Proliferation and Invasion of Prostate Cancer Cells, Independent of p53 and Androgen.
    Qin JJ; Li X; Wang W; Zi X; Zhang R
    Front Pharmacol; 2017; 8():917. PubMed ID: 29311926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inulanolide A as a new dual inhibitor of NFAT1-MDM2 pathway for breast cancer therapy.
    Qin JJ; Wang W; Sarkar S; Voruganti S; Agarwal R; Zhang R
    Oncotarget; 2016 May; 7(22):32566-78. PubMed ID: 27105525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of p53 and destabilization of androgen receptor by combinatorial inhibition of MDM2 and MDMX in prostate cancer cells.
    Chopra H; Khan Z; Contreras J; Wang H; Sedrak A; Zhu Y
    Oncotarget; 2018 Jan; 9(5):6270-6281. PubMed ID: 29464071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy.
    Qin JJ; Sarkar S; Voruganti S; Agarwal R; Wang W; Zhang R
    J Biomed Res; 2016 Jul; 30(4):322-33. PubMed ID: 27533941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibiting NFAT1 for breast cancer therapy: New insights into the mechanism of action of MDM2 inhibitor JapA.
    Qin JJ; Wang W; Voruganti S; Wang H; Zhang WD; Zhang R
    Oncotarget; 2015 Oct; 6(32):33106-19. PubMed ID: 26461225
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway.
    Qin JJ; Wang W; Zhang R
    Prog Mol Biol Transl Sci; 2017; 151():195-216. PubMed ID: 29096894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting USP7-Mediated Deubiquitination of MDM2/MDMX-p53 Pathway for Cancer Therapy: Are We There Yet?
    Qi SM; Cheng G; Cheng XD; Xu Z; Xu B; Zhang WD; Qin JJ
    Front Cell Dev Biol; 2020; 8():233. PubMed ID: 32300595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MDM2-NFAT1 dual inhibitor, MA242: Effective against hepatocellular carcinoma, independent of p53.
    Wang W; Cheng JW; Qin JJ; Hu B; Li X; Nijampatnam B; Velu SE; Fan J; Yang XR; Zhang R
    Cancer Lett; 2019 Sep; 459():156-167. PubMed ID: 31181320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two Birds with One Stone: NFAT1-MDM2 Dual Inhibitors for Cancer Therapy.
    Wang W; Zafar A; Rajaei M; Zhang R
    Cells; 2020 May; 9(5):. PubMed ID: 32397368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FL118 induces p53-dependent senescence in colorectal cancer cells by promoting degradation of MdmX.
    Ling X; Xu C; Fan C; Zhong K; Li F; Wang X
    Cancer Res; 2014 Dec; 74(24):7487-97. PubMed ID: 25512388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Mdm2 and MdmX fusion proteins alters p53 mediated transactivation, ubiquitination, and degradation.
    Ghosh M; Huang K; Berberich SJ
    Biochemistry; 2003 Mar; 42(8):2291-9. PubMed ID: 12600196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of p53 expression and apoptosis by a recombinant dual-target MDM2/MDMX inhibitory protein in wild-type p53 breast cancer cells.
    Geng QQ; Dong DF; Chen NZ; Wu YY; Li EX; Wang J; Wang SM
    Int J Oncol; 2013 Dec; 43(6):1935-42. PubMed ID: 24126697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DIMP53-1: a novel small-molecule dual inhibitor of p53-MDM2/X interactions with multifunctional p53-dependent anticancer properties.
    Soares J; Espadinha M; Raimundo L; Ramos H; Gomes AS; Gomes S; Loureiro JB; Inga A; Reis F; Gomes C; Santos MMM; Saraiva L
    Mol Oncol; 2017 Jun; 11(6):612-627. PubMed ID: 28296148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A site-directed mutagenesis study of the MdmX RING domain.
    Egorova O; Mis M; Sheng Y
    Biochem Biophys Res Commun; 2014 May; 447(4):696-701. PubMed ID: 24755078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The past, present and future of potential small-molecule drugs targeting p53-MDM2/MDMX for cancer therapy.
    Liu Y; Wang X; Wang G; Yang Y; Yuan Y; Ouyang L
    Eur J Med Chem; 2019 Aug; 176():92-104. PubMed ID: 31100649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Single Conserved Amino Acid Residue as a Critical Context-Specific Determinant of the Differential Ability of Mdm2 and MdmX RING Domains to Dimerize.
    Kosztyu P; Slaninová I; Valčíková B; Verlande A; Müller P; Paleček JJ; Uldrijan S
    Front Physiol; 2019; 10():390. PubMed ID: 31024344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of prostate cancer by natural product MDM2 inhibitor GS25: in vitro and in vivo activities and molecular mechanisms.
    Wang W; Qin JJ; Li X; Tao G; Wang Q; Wu X; Zhou J; Zi X; Zhang R
    Carcinogenesis; 2018 Jul; 39(8):1026-1036. PubMed ID: 29762656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional Interrogation of the N-Terminal Lid of MDMX in p53 Binding via Native Chemical Ligation.
    Chen X; Lu W
    Chem Pharm Bull (Tokyo); 2016; 64(7):1004-8. PubMed ID: 27373663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medicinal Chemistry Strategies to Disrupt the p53-MDM2/MDMX Interaction.
    Lemos A; Leão M; Soares J; Palmeira A; Pinto M; Saraiva L; Sousa ME
    Med Res Rev; 2016 Sep; 36(5):789-844. PubMed ID: 27302609
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNA damage-induced phosphorylation of MdmX at serine 367 activates p53 by targeting MdmX for Mdm2-dependent degradation.
    Okamoto K; Kashima K; Pereg Y; Ishida M; Yamazaki S; Nota A; Teunisse A; Migliorini D; Kitabayashi I; Marine JC; Prives C; Shiloh Y; Jochemsen AG; Taya Y
    Mol Cell Biol; 2005 Nov; 25(21):9608-20. PubMed ID: 16227609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.