These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 29311949)

  • 1. On the Mechanism of Human Red Blood Cell Longevity: Roles of Calcium, the Sodium Pump, PIEZO1, and Gardos Channels.
    Lew VL; Tiffert T
    Front Physiol; 2017; 8():977. PubMed ID: 29311949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium Channels and Calcium-Regulated Channels in Human Red Blood Cells.
    Kaestner L; Bogdanova A; Egee S
    Adv Exp Med Biol; 2020; 1131():625-648. PubMed ID: 31646528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-down biphasic volume response of human red blood cells to PIEZO1 activation during capillary transits.
    Rogers S; Lew VL
    PLoS Comput Biol; 2021 Mar; 17(3):e1008706. PubMed ID: 33657092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PIEZO1 and the mechanism of the long circulatory longevity of human red blood cells.
    Rogers S; Lew VL
    PLoS Comput Biol; 2021 Mar; 17(3):e1008496. PubMed ID: 33690597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Model of Piezo1-Based Regulation of Red Blood Cell Volume.
    Svetina S; Švelc Kebe T; Božič B
    Biophys J; 2019 Jan; 116(1):151-164. PubMed ID: 30580922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Piezo1 activation augments sickling propensity and the adhesive properties of sickle red blood cells in a calcium-dependent manner.
    Nader E; Conran N; Leonardo FC; Hatem A; Boisson C; Carin R; Renoux C; Costa FF; Joly P; Brito PL; Esperti S; Bernard J; Gauthier A; Poutrel S; Bertrand Y; Garcia C; Saad STO; Egée S; Connes P
    Br J Haematol; 2023 Aug; 202(3):657-668. PubMed ID: 37011913
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of 1-chloro-2,4-dinitrobenzene on K+ transport in normal and sickle human red blood cells.
    Muzyamba MC; Gibson JS
    J Physiol; 2003 Mar; 547(Pt 3):903-11. PubMed ID: 12576491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezo1 links mechanical forces to red blood cell volume.
    Cahalan SM; Lukacs V; Ranade SS; Chien S; Bandell M; Patapoutian A
    Elife; 2015 May; 4():. PubMed ID: 26001274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid Gardos Hereditary Xerocytosis Diagnosis in 8 Families Using Reticulocyte Indices.
    Picard V; Guitton C; Mansour-Hendili L; Jondeau B; Bendélac L; Denguir M; Demagny J; Proulle V; Galactéros F; Garçon L
    Front Physiol; 2020; 11():602109. PubMed ID: 33519508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the pathophysiology of PIEZO1-related hereditary xerocytosis.
    Jankovsky N; Caulier A; Demagny J; Guitton C; Djordjevic S; Lebon D; Ouled-Haddou H; Picard V; Garçon L
    Am J Hematol; 2021 Aug; 96(8):1017-1026. PubMed ID: 33848364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic ion channel interactions in red cells of patients with Gárdos channelopathy.
    Jansen J; Qiao M; Hertz L; Wang X; Fermo E; Zaninoni A; Colombatti R; Bernhardt I; Bianchi P; Kaestner L
    Blood Adv; 2021 Sep; 5(17):3303-3308. PubMed ID: 34468723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical Bases for the Role of Red Blood Cell Shape in the Regulation of Its Volume.
    Svetina S
    Front Physiol; 2020; 11():544. PubMed ID: 32581839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mild erythrocytosis as a presenting manifestation of
    Knight T; Zaidi AU; Wu S; Gadgeel M; Buck S; Ravindranath Y
    Pediatr Hematol Oncol; 2019 Aug; 36(5):317-326. PubMed ID: 31298594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in understanding the pathogenesis of the red cell volume disorders.
    Badens C; Guizouarn H
    Br J Haematol; 2016 Sep; 174(5):674-85. PubMed ID: 27353637
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium ions, drug action and the red cell membrane.
    Wiley JS; McCulloch KE
    Pharmacol Ther; 1982; 18(2):271-92. PubMed ID: 6296889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sickle cell dehydration: Pathophysiology and therapeutic applications.
    Brugnara C
    Clin Hemorheol Microcirc; 2018; 68(2-3):187-204. PubMed ID: 29614632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local membrane deformations activate Ca2+-dependent K+ and anionic currents in intact human red blood cells.
    Dyrda A; Cytlak U; Ciuraszkiewicz A; Lipinska A; Cueff A; Bouyer G; Egée S; Bennekou P; Lew VL; Thomas SL
    PLoS One; 2010 Feb; 5(2):e9447. PubMed ID: 20195477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The human red cell voltage-regulated cation channel. The interplay with the chloride conductance, the Ca(2+)-activated K(+) channel and the Ca(2+) pump.
    Bennekou P; Kristensen BI; Christophersen P
    J Membr Biol; 2003 Sep; 195(1):1-8. PubMed ID: 14502420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pathophysiology of red cell volume.
    Browning JA; Ellory JC; Gibson JS
    Contrib Nephrol; 2006; 152():241-268. PubMed ID: 17065816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hereditary Xerocytosis: Differential Behavior of PIEZO1 Mutations in the N-Terminal Extracellular Domain Between Red Blood Cells and HEK Cells.
    Yamaguchi Y; Allegrini B; Rapetti-Mauss R; Picard V; Garçon L; Kohl P; Soriani O; Peyronnet R; Guizouarn H
    Front Physiol; 2021; 12():736585. PubMed ID: 34737711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.