BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 29311998)

  • 1. Dynamic Neuron-Glia Interactions in an Oscillatory Network Controlling Behavioral Plasticity in the Weakly Electric Fish,
    Zupanc GKH
    Front Physiol; 2017; 8():1087. PubMed ID: 29311998
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a sexual dimorphism in a central pattern generator driving a rhythmic behavior: The role of glia-mediated potassium buffering in the pacemaker nucleus of the weakly electric fish Apteronotus leptorhynchus.
    Zupanc GKH
    Dev Neurobiol; 2020 Jan; 80(1-2):6-15. PubMed ID: 32090501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glia-mediated modulation of extracellular potassium concentration determines the sexually dimorphic output frequency of a model brainstem oscillator.
    Zupanc GKH; Amaro SM; Lehotzky D; Zupanc FB; Leung NY
    J Theor Biol; 2019 Jun; 471():117-124. PubMed ID: 30902592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus.
    Eske AI; Lehotzky D; Ahmed M; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 May; 209(3):437-457. PubMed ID: 36799986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative analysis reveals dominance of gliogenesis over neurogenesis in an adult brainstem oscillator.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    Dev Neurobiol; 2014 Sep; 74(9):934-52. PubMed ID: 24639054
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior.
    Zupanc GK; Ilies I; Sîrbulescu RF; Zupanc MM
    J Neurophysiol; 2014 Apr; 111(8):1646-54. PubMed ID: 24478160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of eugenol anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus.
    Lehotzky D; Eske AI; Zupanc GKH
    Fish Physiol Biochem; 2023 Dec; 49(6):1321-1338. PubMed ID: 37999822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects.
    Elekes K; Szabo T
    Exp Brain Res; 1985; 60(3):509-20. PubMed ID: 4076373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network.
    Lucas KM; Warrington J; Lewis TJ; Lewis JE
    Neuroscience; 2019 Mar; 401():21-34. PubMed ID: 30641115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling of sustained spontaneous network oscillations of a sexually dimorphic brainstem nucleus: the role of potassium equilibrium potential.
    Hartman D; Lehotzky D; Ilieş I; Levi M; Zupanc GKH
    J Comput Neurosci; 2021 Nov; 49(4):419-439. PubMed ID: 34032982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):971-83. PubMed ID: 10669509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacological characterization of ionic currents that regulate high-frequency spontaneous activity of electromotor neurons in the weakly electric fish, Apteronotus leptorhynchus.
    Smith GT
    J Neurobiol; 2006 Jan; 66(1):1-18. PubMed ID: 16187302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of a neuronal pacemaker in the weakly electric fish Apteronotus.
    Shifman AR; Sun Y; Benoit CM; Lewis JE
    Sci Rep; 2020 Oct; 10(1):16707. PubMed ID: 33028878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic currents that contribute to a sexually dimorphic communication signal in weakly electric fish.
    Smith GT
    J Comp Physiol A; 1999 Oct; 185(4):379-87. PubMed ID: 10555272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1988 Aug; 163(4):445-58. PubMed ID: 3184007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of Kv1-like potassium channels in the electromotor and electrosensory systems of the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Unguez GA; Weber CM
    J Neurobiol; 2006 Aug; 66(9):1011-31. PubMed ID: 16779822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gap junction protein in weakly electric fish (Gymnotide): immunohistochemical localization with emphasis on structures of the electrosensory system.
    Yamamoto T; Maler L; Hertzberg EL; Nagy JI
    J Comp Neurol; 1989 Nov; 289(3):509-36. PubMed ID: 2553783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testosterone increases the number of substance P-like immunoreactive neurons in a specific sub-division of the lateral hypothalamus of the weakly electric, brown ghost knifefish, Apteronotus leptorhynchus.
    Dulka JG; Ebling SL
    Brain Res; 1999 Apr; 826(1):1-9. PubMed ID: 10216191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gap junction effects on precision and frequency of a model pacemaker network.
    Moortgat KT; Bullock TH; Sejnowski TJ
    J Neurophysiol; 2000 Feb; 83(2):984-97. PubMed ID: 10669510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.