These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29312095)

  • 21. Exploring the switching of the focus of attention within working memory: A combined event-related potential and behavioral study.
    Frenken M; Berti S
    Int J Psychophysiol; 2018 Apr; 126():30-41. PubMed ID: 29476873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selection in spatial working memory is independent of perceptual selective attention, but they interact in a shared spatial priority map.
    Hedge C; Oberauer K; Leonards U
    Atten Percept Psychophys; 2015 Nov; 77(8):2653-68. PubMed ID: 26341873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Switching Attention Within Working Memory is Reflected in the P3a Component of the Human Event-Related Brain Potential.
    Berti S
    Front Hum Neurosci; 2015; 9():701. PubMed ID: 26779009
    [TBL] [Abstract][Full Text] [Related]  

  • 24. N-2 repetition leads to a cost within working memory and a benefit outside it.
    Kessler Y
    Ann N Y Acad Sci; 2018 Jul; 1424(1):268-277. PubMed ID: 29542817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural mechanisms of two different verbal working memory tasks: A VLSM study.
    Ivanova MV; Dragoy O; Kuptsova SV; Yu Akinina S; Petrushevskii AG; Fedina ON; Turken A; Shklovsky VM; Dronkers NF
    Neuropsychologia; 2018 Jul; 115():25-41. PubMed ID: 29526647
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Distractor-relevance determines whether task-switching enhances or impairs distractor memory.
    Chiu YC; Egner T
    J Exp Psychol Hum Percept Perform; 2016 Jan; 42(1):1-5. PubMed ID: 26594883
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Competitive Influences of Perceptual Load and Working Memory Guidance on Selective Attention.
    Tan J; Zhao Y; Wang L; Tian X; Cui Y; Yang Q; Pan W; Zhao X; Chen A
    PLoS One; 2015; 10(6):e0129533. PubMed ID: 26098079
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Working-memory capacity and the control of attention: the contributions of goal neglect, response competition, and task set to Stroop interference.
    Kane MJ; Engle RW
    J Exp Psychol Gen; 2003 Mar; 132(1):47-70. PubMed ID: 12656297
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Retrospective Cues Mitigate Information Loss in Human Cortex during Working Memory Storage.
    Ester EF; Nouri A; Rodriguez L
    J Neurosci; 2018 Oct; 38(40):8538-8548. PubMed ID: 30126971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Visual search does not remain efficient when executive working memory is working.
    Han SH; Kim MS
    Psychol Sci; 2004 Sep; 15(9):623-8. PubMed ID: 15327634
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of the Working Memory Load in
    Scharinger C; Soutschek A; Schubert T; Gerjets P
    Front Hum Neurosci; 2017; 11():6. PubMed ID: 28179880
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Symbiosis of executive and selective attention in working memory.
    Vandierendonck A
    Front Hum Neurosci; 2014; 8():588. PubMed ID: 25152723
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Updating, Fast and Slow: Items, but Not Item-Context Bindings, are Quickly Updated Into Working Memory as Part of Response Selection.
    Kessler Y; Zilberman N; Kvitelashvili S
    J Cogn; 2023; 6(1):11. PubMed ID: 36721798
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examining the influence of working memory on updating mental models.
    Valadao DF; Anderson B; Danckert J
    Q J Exp Psychol (Hove); 2015; 68(7):1442-56. PubMed ID: 25406912
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Inhibition and resource capacity during normal aging: a confrontation of the dorsal-ventral and frontal models in a modified version of negative priming].
    Martin S; Brouillet D; Guerdoux E; Tarrago R
    Encephale; 2006; 32(2 Pt 1):253-62. PubMed ID: 16910627
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Correlations in background activity control persistent state stability and allow execution of working memory tasks.
    Dipoppa M; Gutkin BS
    Front Comput Neurosci; 2013; 7():139. PubMed ID: 24155714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The influence of cue-task association and location on switch cost and alternating-switch cost.
    Arbuthnott KD; Woodward TS
    Can J Exp Psychol; 2002 Mar; 56(1):18-29. PubMed ID: 11901958
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Age differences in working memory updating: the role of interference, focus switching and substituting information.
    Lendínez C; Pelegrina S; Lechuga MT
    Acta Psychol (Amst); 2015 May; 157():106-13. PubMed ID: 25756938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the origins of the task mixing cost in the cuing task-switching paradigm.
    Rubin O; Meiran N
    J Exp Psychol Learn Mem Cogn; 2005 Nov; 31(6):1477-91. PubMed ID: 16393058
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neurophysiological measures of task-set switching: effects of working memory and aging.
    Goffaux P; Phillips NA; Sinai M; Pushkar D
    J Gerontol B Psychol Sci Soc Sci; 2008 Mar; 63(2):P57-66. PubMed ID: 18441266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.