These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 29312153)
1. Advanced Photogrammetry to Assess Lichen Colonization in the Hyper-Arid Namib Desert. Hinchliffe G; Bollard-Breen B; Cowan DA; Doshi A; Gillman LN; Maggs-Kolling G; de Los Rios A; Pointing SB Front Microbiol; 2017; 8():2083. PubMed ID: 29312153 [TBL] [Abstract][Full Text] [Related]
2. Novel lichen-dominated hypolithic communities in the Namib Desert. de Los Ríos A; Garrido-Benavent I; Limón A; Cason ED; Maggs-Kölling G; Cowan D; Valverde A Microb Ecol; 2022 May; 83(4):1036-1048. PubMed ID: 34312709 [TBL] [Abstract][Full Text] [Related]
3. Microbial colonization of halite from the hyper-arid Atacama Desert studied by Raman spectroscopy. Vítek P; Edwards HG; Jehlicka J; Ascaso C; De los Ríos A; Valea S; Jorge-Villar SE; Davila AF; Wierzchos J Philos Trans A Math Phys Eng Sci; 2010 Jul; 368(1922):3205-21. PubMed ID: 20529955 [TBL] [Abstract][Full Text] [Related]
4. Microbiomics of Namib Desert habitats. Cowan DA; Hopkins DW; Jones BE; Maggs-Kölling G; Majewska R; Ramond JB Extremophiles; 2020 Jan; 24(1):17-29. PubMed ID: 31376000 [TBL] [Abstract][Full Text] [Related]
6. Microbial colonization of Ca-sulfate crusts in the hyperarid core of the Atacama Desert: implications for the search for life on Mars. Wierzchos J; Cámara B; de Los Ríos A; Davila AF; Sánchez Almazo IM; Artieda O; Wierzchos K; Gómez-Silva B; McKay C; Ascaso C Geobiology; 2011 Jan; 9(1):44-60. PubMed ID: 20726901 [TBL] [Abstract][Full Text] [Related]
7. Southern African biological soil crusts are ubiquitous and highly diverse in drylands, being restricted by rainfall frequency. Büdel B; Darienko T; Deutschewitz K; Dojani S; Friedl T; Mohr KI; Salisch M; Reisser W; Weber B Microb Ecol; 2009 Feb; 57(2):229-47. PubMed ID: 18850242 [TBL] [Abstract][Full Text] [Related]
8. Soil fungal diversity and assembly along a xeric stress gradient in the central Namib Desert. Vikram S; Ramond JB; Ortiz M; Maggs-Kölling G; Pelser K; Cowan DA Fungal Biol; 2023 Apr; 127(4):997-1003. PubMed ID: 37024159 [TBL] [Abstract][Full Text] [Related]
9. Ecophysiology and phylogeny of new terricolous and epiphytic chlorolichens in a fog oasis of the Atacama Desert. Jung P; Emrich D; Briegel-Williams L; Schermer M; Weber L; Baumann K; Colesie C; Clerc P; Lehnert LW; Achilles S; Bendix J; Büdel B Microbiologyopen; 2019 Oct; 8(10):e894. PubMed ID: 31276321 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensionally Structured Flexible Fog Harvesting Surfaces Inspired by Namib Desert Beetles. Park JK; Kim S Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30909375 [TBL] [Abstract][Full Text] [Related]
11. The "Martian" flora: new collections of vascular plants, lichens, fungi, algae, and cyanobacteria from the Mars Desert Research Station, Utah. Sokoloff PC; Freebury CE; Hamilton PB; Saarela JM Biodivers Data J; 2016; (4):e8176. PubMed ID: 27350765 [TBL] [Abstract][Full Text] [Related]
12. Hypolithic cyanobacteria supported mainly by fog in the coastal range of the Atacama Desert. Azúa-Bustos A; González-Silva C; Mancilla RA; Salas L; Gómez-Silva B; McKay CP; Vicuña R Microb Ecol; 2011 Apr; 61(3):568-81. PubMed ID: 21188376 [TBL] [Abstract][Full Text] [Related]
13. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Stomeo F; Valverde A; Pointing SB; McKay CP; Warren-Rhodes KA; Tuffin MI; Seely M; Cowan DA Extremophiles; 2013 Mar; 17(2):329-37. PubMed ID: 23397517 [TBL] [Abstract][Full Text] [Related]
14. The effect of lichen-dominated biological soil crusts on growth and physiological characteristics of three plant species in a temperate desert of northwest China. Zhuang WW; Serpe M; Zhang YM Plant Biol (Stuttg); 2015 Nov; 17(6):1165-75. PubMed ID: 26084731 [TBL] [Abstract][Full Text] [Related]
15. Ignimbrite textural properties as determinants of endolithic colonization patterns from hyper-arid Atacama Desert. Cámara B; Suzuki S; Nealson KH; Wierzchos J; Ascaso C; Artieda O; de los Ríos A Int Microbiol; 2014 Dec; 17(4):235-47. PubMed ID: 26421739 [TBL] [Abstract][Full Text] [Related]
16. Historical and current atmospheric deposition to the epilithic lichen Xanthoparmelia in Maricopa County, Arizona. Zschau T; Getty S; Gries C; Ameron Y; Zambrano A; Nash TH Environ Pollut; 2003; 125(1):21-30. PubMed ID: 12804824 [TBL] [Abstract][Full Text] [Related]
17. Desert breath-How fog promotes a novel type of soil biocenosis, forming the coastal Atacama Desert's living skin. Jung P; Baumann K; Lehnert LW; Samolov E; Achilles S; Schermer M; Wraase LM; Eckhardt KU; Bader MY; Leinweber P; Karsten U; Bendix J; Büdel B Geobiology; 2020 Jan; 18(1):113-124. PubMed ID: 31721410 [TBL] [Abstract][Full Text] [Related]
18. Temperature and moisture conditions for life in the extreme arid region of the Atacama desert: four years of observations including the El Niño of 1997-1998. McKay CP; Friedmann EI; Gómez-Silva B; Cáceres-Villanueva L; Andersen DT; Landheim R Astrobiology; 2003; 3(2):393-406. PubMed ID: 14577886 [TBL] [Abstract][Full Text] [Related]
19. Life in extreme environments: survival strategy of the endolithic desert lichen Verrucaria rubrocincta. Garvie LA; Knauth LP; Bungartz F; Klonowski S; Nash TH Naturwissenschaften; 2008 Aug; 95(8):705-12. PubMed ID: 18350264 [TBL] [Abstract][Full Text] [Related]
20. Raman spectroscopy of hot desert, high altitude epilithic lichens. Villar SE; Edwards HG; Seaward MR Analyst; 2005 May; 130(5):730-7. PubMed ID: 15852144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]