BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 29312200)

  • 1. A Single-Nucleotide Deletion in the Transcription Factor Gene
    Zhou Y; Yang L; Wu M; Chen W; Li G; Zhang J
    Front Microbiol; 2017; 8():2492. PubMed ID: 29312200
    [No Abstract]   [Full Text] [Related]  

  • 2. Contrast Between Orange- and Black-Colored Sclerotial Isolates of Botrytis cinerea: Melanogenesis and Ecological Fitness.
    Zhou Y; Li N; Yang J; Yang L; Wu M; Chen W; Li G; Zhang J
    Plant Dis; 2018 Feb; 102(2):428-436. PubMed ID: 30673519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DHN melanin biosynthesis in the plant pathogenic fungus Botrytis cinerea is based on two developmentally regulated key enzyme (PKS)-encoding genes.
    Schumacher J
    Mol Microbiol; 2016 Feb; 99(4):729-48. PubMed ID: 26514268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological characterization of the melanin biosynthesis gene Bcscd1 in the plant pathogenic fungus Botrytis cinerea.
    Zhou Y; Song J; Wang Y; Yang L; Wu M; Li G; Zhang J
    Fungal Genet Biol; 2022 May; 160():103693. PubMed ID: 35398257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmentalization of Melanin Biosynthetic Enzymes Contributes to Self-Defense against Intermediate Compound Scytalone in
    Chen X; Zhu C; Na Y; Ren D; Zhang C; He Y; Wang Y; Xiang S; Ren W; Jiang Y; Xu L; Zhu P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33758088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ras2 Is Responsible for the Environmental Responses, Melanin Metabolism, and Virulence of
    Li H; Shen X; Wu W; Zhang W; Wang Y
    J Fungi (Basel); 2023 Mar; 9(4):. PubMed ID: 37108887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single Nucleotide Mutation in Adenylate Cyclase Affects Vegetative Growth, Sclerotial Formation and Virulence of
    Chen X; Zhang X; Zhu P; Wang Y; Na Y; Guo H; Cai Y; Nie H; Jiang Y; Xu L
    Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32326350
    [No Abstract]   [Full Text] [Related]  

  • 8. The Subtilisin-Like Protease Bcser2 Affects the Sclerotial Formation, Conidiation and Virulence of
    Liu X; Xie J; Fu Y; Jiang D; Chen T; Cheng J
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963451
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel Botrytis cinerea-specific gene BcHBF1 enhances virulence of the grey mould fungus via promoting host penetration and invasive hyphal development.
    Liu Y; Liu JK; Li GH; Zhang MZ; Zhang YY; Wang YY; Hou J; Yang S; Sun J; Qin QM
    Mol Plant Pathol; 2019 May; 20(5):731-747. PubMed ID: 31008573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Report of Leaf Spot Caused by Botrytis cinerea on Strawberry in China.
    Zhang GF; Lou TL; Mao BZ; Bi JA; Yan CQ; Shen L
    Plant Dis; 2023 Sep; ():. PubMed ID: 37700481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deficiency of the melanin biosynthesis genes SCD1 and THR1 affects sclerotial development and vegetative growth, but not pathogenicity, in Sclerotinia sclerotiorum.
    Liang Y; Xiong W; Steinkellner S; Feng J
    Mol Plant Pathol; 2018 Jun; 19(6):1444-1453. PubMed ID: 29024255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypical differences among B. cinerea isolates from ornamental plants.
    Martínez JA; Valdés R; Vicente MJ; Bañón S
    Commun Agric Appl Biol Sci; 2008; 73(2):121-9. PubMed ID: 19226749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed transformants with E407K substitution in Bcmdl1 possesses different fitness from field anilinopyrimidine resistant isolates with E407K mutation in Botrytis cinerea.
    Fan F; Wu MY; Zhu YX; Li GQ; Luo CX
    Pestic Biochem Physiol; 2023 Jun; 193():105427. PubMed ID: 37248005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of indole-3-acetic acid on Botrytis cinerea isolates obtained from potted plants.
    Martínez JA; Valdés R; Gómez-Bellot MJ; Bañón S
    Commun Agric Appl Biol Sci; 2011; 76(4):643-51. PubMed ID: 22702183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea.
    Schumacher J; Pradier JM; Simon A; Traeger S; Moraga J; Collado IG; Viaud M; Tudzynski B
    PLoS One; 2012; 7(10):e47840. PubMed ID: 23118899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Two Cryptochrome/Photolyase Family Proteins Fulfill Distinct Roles in DNA Photorepair and Regulation of Conidiation in the Gray Mold Fungus Botrytis cinerea.
    Cohrs KC; Schumacher J
    Appl Environ Microbiol; 2017 Sep; 83(17):. PubMed ID: 28667107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biological control of Botrytis gray mould and Sclerotinia drop in lettuce.
    Fiume F; Fiume G
    Commun Agric Appl Biol Sci; 2005; 70(3):157-68. PubMed ID: 16637171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The MADS-Box transcription factor Bcmads1 is required for growth, sclerotia production and pathogenicity of Botrytis cinerea.
    Zhang Z; Li H; Qin G; He C; Li B; Tian S
    Sci Rep; 2016 Sep; 6():33901. PubMed ID: 27658442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First Report of Botrytis cinerea Causing Stem Rot on Pea (Pisum sativum L.) in China.
    Long J; Sun S; Liu C; Wu W; Duan C; Zhu Z
    Plant Dis; 2022 Dec; ():. PubMed ID: 36471462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First report of Botrytis cinerea causing gray mold on Prunella vulgaris in Hubei province, China.
    Li J; Yuan W; Chen H; Chen X; Miao Y; Liu D
    Plant Dis; 2022 Nov; ():. PubMed ID: 36350726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.