BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 29312426)

  • 1. Abiotic Stress Response to As and As+Si, Composite Reprogramming of Fruit Metabolites in Tomato Cultivars.
    Marmiroli M; Mussi F; Imperiale D; Lencioni G; Marmiroli N
    Front Plant Sci; 2017; 8():2201. PubMed ID: 29312426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Target proteins reprogrammed by As and As + Si treatments in Solanum lycopersicum L. fruit.
    Marmiroli M; Mussi F; Imperiale D; Marmiroli N
    BMC Plant Biol; 2017 Nov; 17(1):210. PubMed ID: 29157202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of Biochemical, Molecular, and Synchrotron-Radiation-Based Techniques to Study the Effects of Silicon in Tomato (
    Marmiroli M; Mussi F; Gallo V; Gianoncelli A; Hartley W; Marmiroli N
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovering Tomato Landraces to Simultaneously Improve Fruit Yield and Nutritional Quality Against Salt Stress.
    Massaretto IL; Albaladejo I; Purgatto E; Flores FB; Plasencia F; Egea-Fernández JM; Bolarin MC; Egea I
    Front Plant Sci; 2018; 9():1778. PubMed ID: 30555505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological response of Cistus salviifolius L. to high arsenic concentrations.
    Carvalho LC; Vieira C; Abreu MM; Magalhães MCF
    Environ Geochem Health; 2020 Aug; 42(8):2305-2319. PubMed ID: 31473873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulatory Role of Silicon in Mediating Differential Stress Tolerance Responses in Two Contrasting Tomato Genotypes Under Osmotic Stress.
    Ali N; Schwarzenberg A; Yvin JC; Hosseini SA
    Front Plant Sci; 2018; 9():1475. PubMed ID: 30349552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon Enhances Water Stress Tolerance by Improving Root Hydraulic Conductance in Solanum lycopersicum L.
    Shi Y; Zhang Y; Han W; Feng R; Hu Y; Guo J; Gong H
    Front Plant Sci; 2016; 7():196. PubMed ID: 26941762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes.
    Naeem A; Saifullah ; Zia-Ur-Rehman M; Akhtar T; Zia MH; Aslam M
    Environ Pollut; 2018 Nov; 242(Pt A):126-135. PubMed ID: 29966836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved functional and nutritional properties of tomato fruit during cold storage.
    Alenazi MM; Shafiq M; Alsadon AA; Alhelal IM; Alhamdan AM; Solieman THI; Ibrahim AA; Shady MR; Al-Selwey WA
    Saudi J Biol Sci; 2020 Jun; 27(6):1467-1474. PubMed ID: 32489282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the regulation and function of secondary metabolism during fruit development and ripening.
    Tohge T; Alseekh S; Fernie AR
    J Exp Bot; 2014 Aug; 65(16):4599-611. PubMed ID: 24446507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new genetic linkage map of tomato based on a Solanum lycopersicum x S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes.
    Ashrafi H; Kinkade M; Foolad MR
    Genome; 2009 Nov; 52(11):935-56. PubMed ID: 19935918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptional regulation-mediating ROS homeostasis and physio-biochemical changes in wild tomato (
    Kashyap SP; Kumari N; Mishra P; Prasad Moharana D; Aamir M; Singh B; Prasanna HC
    Saudi J Biol Sci; 2020 Aug; 27(8):1999-2009. PubMed ID: 32714024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative injury and antioxidant enzymes regulation in arsenic-exposed seedlings of four Brassica napus L. cultivars.
    Farooq MA; Li L; Ali B; Gill RA; Wang J; Ali S; Gill MB; Zhou W
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10699-712. PubMed ID: 25752633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit.
    Calafiore R; Ruggieri V; Raiola A; Rigano MM; Sacco A; Hassan MI; Frusciante L; Barone A
    Front Plant Sci; 2016; 7():397. PubMed ID: 27092148
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Silicon Application on Uptake of Arsenic and Phosphorus and Formation of Iron Plaque in Rice Seedlings Grown in an Arsenic-Contaminated Soil.
    Li R; Zhou Z; Xu X; Xie X; Zhang Q; Liu Y
    Bull Environ Contam Toxicol; 2019 Jul; 103(1):133-139. PubMed ID: 30666387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice.
    Zia Z; Bakhat HF; Saqib ZA; Shah GM; Fahad S; Ashraf MR; Hammad HM; Naseem W; Shahid M
    Ecotoxicol Environ Saf; 2017 Oct; 144():11-18. PubMed ID: 28599126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Yield and Nutritional Response of Greenhouse Grown Tomato Cultivars to Sustainable Fertilization and Irrigation Management.
    Stoleru V; Inculet SC; Mihalache G; Cojocaru A; Teliban GC; Caruso G
    Plants (Basel); 2020 Aug; 9(8):. PubMed ID: 32824850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant Metabolites and Regulation under Environmental Stress.
    Szepesi Á
    Plants (Basel); 2021 Sep; 10(10):. PubMed ID: 34685821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of Silicon Nanoparticles on the Antioxidant Compounds of Tomato Fruits Stressed by Arsenic.
    González-Moscoso M; Martínez-Villegas NV; Cadenas-Pliego G; Benavides-Mendoza A; Rivera-Cruz MDC; González-Morales S; Juárez-Maldonado A
    Foods; 2019 Nov; 8(12):. PubMed ID: 31771217
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.