These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29312656)

  • 1. Assessment of Homodyned K Distribution Modeling Ultrasonic Speckles from Scatterers with Varying Spatial Organizations.
    Hu X; Zhang Y; Deng L; Cai G; Zhang Q; Zhou Y; Zhang K; Zhang J
    J Healthc Eng; 2017; 2017():8154780. PubMed ID: 29312656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A dynamic ultrasound simulation of a pulsating three-layered CCA for validation of two-dimensional wall motion and blood velocity estimation algorithms.
    Hu X; Zhang Y; Cai G; Zhang K; Deng L; Gao L; Han S; Chen J
    Med Phys; 2018 Jan; 45(1):131-143. PubMed ID: 29148586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Parameter Estimator of the Homodyned K Distribution Based on the Maximum Likelihood Method for Ultrasound Tissue Characterization.
    Liu Y; Zhang Y; He B; Li Z; Lang X; Liang H; Chen J
    Ultrason Imaging; 2022 Jul; 44(4):142-160. PubMed ID: 35674146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artifact reduction of ultrasound Nakagami imaging by combining multifocus image reconstruction and the noise-assisted correlation algorithm.
    Tsui PH; Tsai YW
    Ultrason Imaging; 2015 Jan; 37(1):53-69. PubMed ID: 24626567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of adaptive threshold filtering on ultrasonic nakagami parameter to detect variation in scatterer concentration.
    Tsui PH; Wan YL; Huang CC; Wang MC
    Ultrason Imaging; 2010 Oct; 32(4):229-42. PubMed ID: 21213568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scatterer reconstruction and parametrization of homogeneous tissue for ultrasound image simulation.
    Mattausch O; Goksel O
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6350-3. PubMed ID: 26737745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A generalized gamma mixture model for ultrasonic tissue characterization.
    Vegas-Sanchez-Ferrero G; Aja-Fernandez S; Palencia C; Martin-Fernandez M
    Comput Math Methods Med; 2012; 2012():481923. PubMed ID: 23424602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A study on understanding the physical mechanism of change in ultrasonic envelope statistical property during temperature elevation.
    Omura M; Takeuchi M; Nagaoka R; Hasegawa H
    Med Phys; 2021 Jun; 48(6):3042-3054. PubMed ID: 33880793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance evaluation of ultrasonic Nakagami image in tissue characterization.
    Tsui PH; Yeh CK; Chang CC; Chen WS
    Ultrason Imaging; 2008 Apr; 30(2):78-94. PubMed ID: 18939610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative ultrasound estimates from populations of scatterers with continuous size distributions.
    Lavarello R; Oelze M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Apr; 58(4):744-53. PubMed ID: 21507752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound Homodyned-K Contrast-Weighted Summation Parametric Imaging Based on H-scan for Detecting Microwave Ablation Zones.
    Li S; Zhou Z; Wu S; Wu W
    Ultrason Imaging; 2023 May; 45(3):119-135. PubMed ID: 36995065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulation model for ultrasonic temperature imaging using change in backscattered energy.
    Trobaugh JW; Arthur RM; Straube WL; Moros EG
    Ultrasound Med Biol; 2008 Feb; 34(2):289-98. PubMed ID: 17935869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimodality quantitative ultrasound envelope statistics imaging based support vector machines for characterizing tissue scatterer distribution patterns: Methods and application in detecting microwave-induced thermal lesions.
    Li S; Tsui PH; Wu W; Zhou Z; Wu S
    Ultrason Sonochem; 2024 Jul; 107():106910. PubMed ID: 38772312
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional ultrasonic Nakagami imaging for tissue characterization.
    Tsui PH; Hsu CW; Ho MC; Chen YS; Lin JJ; Chang CC; Chu CC
    Phys Med Biol; 2010 Oct; 55(19):5849-66. PubMed ID: 20844338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ESTIMATION METHOD OF THE HOMODYNED K-DISTRIBUTION BASED ON THE MEAN INTENSITY AND TWO LOG-MOMENTS.
    Destrempes F; Porée J; Cloutier G
    SIAM J Imaging Sci; 2013 Aug; 6(3):1499-1530. PubMed ID: 24795788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative ultrasonic characterization of diffuse scatterers in the presence of structures that produce coherent echoes.
    Luchies AC; Ghoshal G; O'Brien WD; Oelze ML
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 May; 59(5):893-904. PubMed ID: 22622974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging local scatterer concentrations by the Nakagami statistical model.
    Tsui PH; Chang CC
    Ultrasound Med Biol; 2007 Apr; 33(4):608-19. PubMed ID: 17343979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Parameter estimation of the homodyned K distribution based on an artificial neural network for ultrasound tissue characterization.
    Zhou Z; Gao A; Wu W; Tai DI; Tseng JH; Wu S; Tsui PH
    Ultrasonics; 2021 Mar; 111():106308. PubMed ID: 33290957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unifying Concepts of Statistical and Spectral Quantitative Ultrasound Techniques.
    Destrempes F; Franceschini E; Yu FT; Cloutier G
    IEEE Trans Med Imaging; 2016 Feb; 35(2):488-500. PubMed ID: 26415165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Image-Based Reconstruction of Tissue Scatterers Using Beam Steering for Ultrasound Simulation.
    Mattausch O; Goksel O
    IEEE Trans Med Imaging; 2018 Mar; 37(3):767-780. PubMed ID: 29533894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.