These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 29312888)

  • 41. Chromosomal biodosimetry by unfolding a mixed Poisson distribution: a generalized model.
    Sasaki MS
    Int J Radiat Biol; 2003 Feb; 79(2):83-97. PubMed ID: 12569012
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of α-particle-induced chromosomal aberrations by chemically-induced PCC. Elaboration of dose-effect curves.
    Puig R; Pujol M; Barrios L; Caballín MR; Barquinero JF
    Int J Radiat Biol; 2016 Sep; 92(9):493-501. PubMed ID: 27454163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Limitations of a convolution method for modeling geometric uncertainties in radiation therapy: the radiobiological dose-per-fraction effect.
    Song W; Battista J; Van Dyk J
    Med Phys; 2004 Nov; 31(11):3034-45. PubMed ID: 15587657
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The impact of fractionation in SBRT: analysis with the linear quadratic model and the universal survival curve model.
    Wennberg B; Lax I
    Acta Oncol; 2013 Jun; 52(5):902-9. PubMed ID: 23327339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The linear-quadratic model is inappropriate to model high dose per fraction effects in radiosurgery.
    Kirkpatrick JP; Meyer JJ; Marks LB
    Semin Radiat Oncol; 2008 Oct; 18(4):240-3. PubMed ID: 18725110
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimal radiotherapy for prostate cancer: predictions for conventional external beam, IMRT, and brachytherapy from radiobiologic models.
    King CR; DiPetrillo TA; Wazer DE
    Int J Radiat Oncol Biol Phys; 2000 Jan; 46(1):165-72. PubMed ID: 10656389
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cell kill by megavoltage protons with high LET.
    Kuperman VY
    Phys Med Biol; 2016 Jul; 61(14):5183-97. PubMed ID: 27351166
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Renal damage in the mouse: the response to very small doses per fraction.
    Joiner MC; Johns H
    Radiat Res; 1988 May; 114(2):385-98. PubMed ID: 3375433
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dose-rate effects in external beam radiotherapy redux.
    Ling CC; Gerweck LE; Zaider M; Yorke E
    Radiother Oncol; 2010 Jun; 95(3):261-8. PubMed ID: 20363041
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Theoretical effectiveness of cell survival in fractionated radiotherapy with hypoxia-targeted dose escalation.
    Chvetsov AV; Rajendran JG; Zeng J; Patel SA; Bowen SR; Kim EY
    Med Phys; 2017 May; 44(5):1975-1982. PubMed ID: 28236652
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Indications of repair of radon-induced chromosome damage in human lymphocytes: an adaptive response induced by low doses of X-rays.
    Wolff S; Afzal V; Jostes RF; Wiencke JK
    Environ Health Perspect; 1993 Oct; 101 Suppl 3(Suppl 3):73-7. PubMed ID: 8143650
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Technical report. The application of probability-generating functions to linear-quadratic radiation survival curves.
    Kendal WS
    Int J Radiat Biol; 2000 Apr; 76(4):581-7. PubMed ID: 10815640
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Linear-quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord.
    Wong CS; Minkin S; Hill RP
    Radiother Oncol; 1992 Mar; 23(3):176-84. PubMed ID: 1574596
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An analysis of the distribution and dose response of chromosome aberrations in human lymphocytes after in vitro exposure to 137Cesium gamma radiation.
    Doggett NA; McKenzie WH
    Radiat Environ Biophys; 1983; 22(1):33-51. PubMed ID: 6611844
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Frequencies of chromosomal aberrations induced in human blood lymphocytes by low doses of X-rays.
    Lloyd DC; Edwards AA; Léonard A; Deknudt G; Natarajan A; Obe G; Palitti F; Tanzarella C; Tawn EJ
    Int J Radiat Biol Relat Stud Phys Chem Med; 1988 Jan; 53(1):49-55. PubMed ID: 3257478
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Impact of Fractionation and Dose in a Multivariate Model for Radiation-Induced Chest Wall Pain.
    Din SU; Williams EL; Jackson A; Rosenzweig KE; Wu AJ; Foster A; Yorke ED; Rimner A
    Int J Radiat Oncol Biol Phys; 2015 Oct; 93(2):418-24. PubMed ID: 26254680
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model.
    Bodgi L; Foray N
    Int J Radiat Biol; 2016; 92(3):117-31. PubMed ID: 26907628
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Calculation of the biological effect of fractionated radiotherapy: the importance of radiation-induced apoptosis.
    Olsen DR
    Br J Radiol; 1995 Nov; 68(815):1230-6. PubMed ID: 8542231
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cell-survival probability at large doses: an alternative to the linear-quadratic model.
    Hanin LG; Zaider M
    Phys Med Biol; 2010 Aug; 55(16):4687-702. PubMed ID: 20671352
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fitting the Generalized Target Model to Cell Survival Data of Proton Radiation Reveals Dose-Dependent RBE and Inspires an Alternative Method to Estimate RBE in High-Dose Regions.
    Zhao L; He X; Chen X; Shang Y; Mi D; Sun Y
    Radiat Res; 2019 Nov; 192(5):507-516. PubMed ID: 31418641
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.