These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 2931290)

  • 1. Morphine increases the activity of midbrain dopamine neurons in vitro.
    Trulson ME; Arasteh K
    Eur J Pharmacol; 1985 Aug; 114(1):105-9. PubMed ID: 2931290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Midbrain muscarinic receptors modulate morphine-induced accumbal and striatal dopamine efflux in the rat.
    Miller AD; Forster GL; Yeomans JS; Blaha CD
    Neuroscience; 2005; 136(2):531-8. PubMed ID: 16216430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The actions of opiates in the rat substantia nigra: an electrophysiological analysis.
    Hommer DW; Pert A
    Peptides; 1983; 4(5):603-8. PubMed ID: 6657509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological evidence for excitation of rat ventral tegmental area dopamine neurons by morphine.
    Matthews RT; German DC
    Neuroscience; 1984 Mar; 11(3):617-25. PubMed ID: 6717805
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between the pharmacology of dopamine receptors mediating the inhibition of cell firing in rat brain slices through the substantia nigra pars compacta and ventral tegmental area.
    Bowery B; Rothwell LA; Seabrook GR
    Br J Pharmacol; 1994 Jul; 112(3):873-80. PubMed ID: 7921615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of the opiate antagonist naloxone on the electrical activity of identified neurons in the edible snail].
    Romanenko OK; Pivovarov AS; Bakalkin GIa
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1987; (6):50-5. PubMed ID: 3040132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electrophysiological actions of dopamine and dopaminergic drugs on neurons of the substantia nigra pars compacta and ventral tegmental area.
    Mercuri NB; Calabresi P; Bernardi G
    Life Sci; 1992; 51(10):711-8. PubMed ID: 1355254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dopamine and the action of opiates: a reevaluation of the dopamine hypothesis of schizophrenia. With special consideration of the role of endogenous opioids in the pathogenesis of schizophrenia.
    Schmauss C; Emrich HM
    Biol Psychiatry; 1985 Nov; 20(11):1211-31. PubMed ID: 2996642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence that physical dependence on morphine is mediated by the ventral midbrain.
    Baumeister AA; Anticich TG; Hebert G; Hawkins MF; Nagy M
    Neuropharmacology; 1989 Nov; 28(11):1151-7. PubMed ID: 2594160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Midbrain dopamine neurons: differential responses to amphetamine isomers.
    Browder S; German DC; Shore PA
    Brain Res; 1981 Mar; 207(2):333-42. PubMed ID: 7470912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of low doses of morphine on the activity of dopamine-containing cells and on behavior.
    Ostrowski NL; Hatfield CB; Caggiula AR
    Life Sci; 1982 Nov 15-22; 31(20-21):2347-50. PubMed ID: 7162350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the properties of identified dopaminergic neurons in the mouse substantia nigra and ventral tegmental area.
    Krashia P; Martini A; Nobili A; Aversa D; D'Amelio M; Berretta N; Guatteo E; Mercuri NB
    Eur J Neurosci; 2017 Jan; 45(1):92-105. PubMed ID: 27519559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphine-induced activation of A10 dopamine neurons in the rat.
    Gysling K; Wang RY
    Brain Res; 1983 Oct; 277(1):119-27. PubMed ID: 6315137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuropeptide FLFQRFamide receptors within the ventral mesenchephalon and dopaminergic terminal areas: localization and functional antiopioid involvement.
    Marco N; Stinus L; Allard M; Le Moal M; Simonnet G
    Neuroscience; 1995 Feb; 64(4):1035-44. PubMed ID: 7753374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlation between locomotor stimulation and the electrophysiological effects of low doses of morphine on substantia nigra dopamine neurons. I. Acute drug administration.
    Ostrowski NL; Caggiula AR
    J Pharmacol Exp Ther; 1991 Apr; 257(1):72-81. PubMed ID: 2020010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recording of mouse ventral tegmental area dopamine-containing neurons.
    Trulson ME; Trulson TJ
    Exp Neurol; 1987 Apr; 96(1):68-81. PubMed ID: 2881804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of different durations of morphine exposure on mesencephalic dopaminergic neurons in morphine dependent rats.
    Shi W; Ma C; Qi Q; Liu L; Bi H; Cong B; Li Y
    Neurotoxicology; 2015 Dec; 51():51-7. PubMed ID: 26386147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signalling through phospholipase C beta 4 is not essential for midbrain dopaminergic neuron survival.
    Smits SM; van der Nobelen S; Hornman KJ; von Oerthel L; Burbach JP; Smidt MP
    Neuroscience; 2005; 136(1):171-9. PubMed ID: 16198487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alpha 1-adrenergic effects on dopamine neurons recorded intracellularly in the rat midbrain slice.
    Grenhoff J; North RA; Johnson SW
    Eur J Neurosci; 1995 Aug; 7(8):1707-13. PubMed ID: 7582125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contractile effect of morphine and related opioid alkaloids, beta-endorphin and methionine enkephalin on the isolated colon from Long Evans rats.
    Huidobro-Toro JP; Way EL
    Br J Pharmacol; 1981 Nov; 74(3):681-94. PubMed ID: 6170377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.