BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29313429)

  • 1. Evaluation of different vector design strategies for the expression of recombinant monoclonal antibody in CHO cells.
    Bayat H; Hossienzadeh S; Pourmaleki E; Ahani R; Rahimpour A
    Prep Biochem Biotechnol; 2018 Feb; 48(2):160-164. PubMed ID: 29313429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of antibodies using single open reading frame (sORF) vector design: Demonstration of manufacturing feasibility.
    Gion WR; Davis-Taber RA; Regier DA; Fung E; Medina L; Santora LC; Bose S; Ivanov AV; Perilli-Palmer BA; Chumsae CM; Matuck JG; Kunes YZ; Carson GR
    MAbs; 2013; 5(4):595-607. PubMed ID: 23774760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enabling speed to clinic for monoclonal antibody programs using a pool of clones for IND-enabling toxicity studies.
    Bolisetty P; Tremml G; Xu S; Khetan A
    MAbs; 2020; 12(1):1763727. PubMed ID: 32449878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant monoclonal antibody production in yeasts: Challenges and considerations.
    Das PK; Sahoo A; Veeranki VD
    Int J Biol Macromol; 2024 May; 266(Pt 2):131379. PubMed ID: 38580014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic barcoding for clonal diversity monitoring and control in cell-based complex antibody production.
    Bauer N; Oberist C; Poth M; Stingele J; Popp O; Ausländer S
    Sci Rep; 2024 Jun; 14(1):14587. PubMed ID: 38918509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A systemic approach to identifying sequence frameworks that decrease mAb production in a transient Chinese hamster ovary cell expression system.
    Szkodny AC; Lee KH
    Biotechnol Prog; 2024 Apr; ():e3466. PubMed ID: 38607316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 10 g/L process for a difficult-to-express multispecific antibody format using a holistic process development approach.
    Peltret M; Vetsch P; Farvaque E; Mette R; Tsachaki M; Duarte L; Duret A; Vaxelaire E; Frank J; Moritz B; Aillerie C; Giovannini R; Bertschinger M
    J Biotechnol; 2024 Jun; 389():30-42. PubMed ID: 38685416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-host expression system for recombinant production of challenging proteins.
    Meyer S; Lorenz C; Baser B; Wördehoff M; Jäger V; van den Heuvel J
    PLoS One; 2013; 8(7):e68674. PubMed ID: 23874717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined approach of selective and accelerated cloning for microfluidic chip-based system increases clone specific productivity.
    Desmurget C; Frentzel J; Strembitska A; Sobkowiak K; Perilleux A; Souquet J; Borth N; Douet J
    Biotechnol J; 2024 May; 19(5):e2300488. PubMed ID: 38803036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. When will we have a clone? An industry perspective on the typical CLD timeline.
    Clarke H; Mayer-Bartschmid A; Zheng C; Masterjohn E; Patel F; Moffat M; Wei Q; Liu R; Emmins R; Fischer S; Rieder S; Kelly T
    Biotechnol Prog; 2024 Mar; ():e3449. PubMed ID: 38477447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RNA-Seq Highlights High Clonal Variation in Monoclonal Antibody Producing CHO Cells.
    Orellana CA; Marcellin E; Palfreyman RW; Munro TP; Gray PP; Nielsen LK
    Biotechnol J; 2018 Mar; 13(3):e1700231. PubMed ID: 29316330
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a chemically defined platform fed-batch culture media for monoclonal antibody-producing CHO cell lines with optimized choline content.
    Kuwae S; Miyakawa I; Doi T
    Cytotechnology; 2018 Jun; 70(3):939-948. PubMed ID: 29322349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glycoengineering in CHO Cells: Advances in Systems Biology.
    Tejwani V; Andersen MR; Nam JH; Sharfstein ST
    Biotechnol J; 2018 Mar; 13(3):e1700234. PubMed ID: 29316325
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for Using Small Non-Coding RNAs to Improve Recombinant Protein Expression in Mammalian Cells.
    Inwood S; Betenbaugh MJ; Shiloach J
    Genes (Basel); 2018 Jan; 9(1):. PubMed ID: 29315258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short- and long-term effects on mAb-producing CHO cell lines after cryopreservation.
    Subramanian J; Aulakh RPS; Grewal PS; Sanford M; Pynn AFJ; Yuk IH
    Biotechnol Prog; 2018 Mar; 34(2):463-477. PubMed ID: 29314708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in Chromosome Counts and Patterns in CHO Cell Lines upon Generation of Recombinant Cell Lines and Subcloning.
    Vcelar S; Melcher M; Auer N; Hrdina A; Puklowski A; Leisch F; Jadhav V; Wenger T; Baumann M; Borth N
    Biotechnol J; 2018 Mar; 13(3):e1700495. PubMed ID: 29328552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel bicistronic gene design couples stable cell line selection with a fucose switch in a designer CHO host to produce native and afucosylated glycoform antibodies.
    Roy G; Martin T; Barnes A; Wang J; Jimenez RB; Rice M; Li L; Feng H; Zhang S; Chaerkady R; Wu H; Marelli M; Hatton D; Zhu J; Bowen MA
    MAbs; 2018 Apr; 10(3):416-430. PubMed ID: 29400603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of CHO Metabolism on Cell Growth and Protein Production: An Overview of Toxic and Inhibiting Metabolites and Nutrients.
    Pereira S; Kildegaard HF; Andersen MR
    Biotechnol J; 2018 Mar; 13(3):e1700499. PubMed ID: 29393587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of apoptosis using exosomes in Chinese hamster ovary cell culture.
    Han S; Rhee WJ
    Biotechnol Bioeng; 2018 May; 115(5):1331-1339. PubMed ID: 29337363
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time monitoring of antibody glycosylation site occupancy by in situ Raman spectroscopy during bioreactor CHO cell cultures.
    Li MY; Ebel B; Paris C; Chauchard F; Guedon E; Marc A
    Biotechnol Prog; 2018 Mar; 34(2):486-493. PubMed ID: 29314747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.