These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
488 related articles for article (PubMed ID: 29313675)
1. Aggregation-Induced Emission Enhancement from Disilane-Bridged Donor-Acceptor-Donor Luminogens Based on the Triarylamine Functionality. Usuki T; Shimada M; Yamanoi Y; Ohto T; Tada H; Kasai H; Nishibori E; Nishihara H ACS Appl Mater Interfaces; 2018 Apr; 10(15):12164-12172. PubMed ID: 29313675 [TBL] [Abstract][Full Text] [Related]
2. Bright Solid-State Emission of Disilane-Bridged Donor-Acceptor-Donor and Acceptor-Donor-Acceptor Chromophores. Shimada M; Tsuchiya M; Sakamoto R; Yamanoi Y; Nishibori E; Sugimoto K; Nishihara H Angew Chem Int Ed Engl; 2016 Feb; 55(9):3022-6. PubMed ID: 26822564 [TBL] [Abstract][Full Text] [Related]
3. Efficient Blue and Yellow Organic Light-Emitting Diodes Enabled by Aggregation-Induced Emission. Venkatramaiah N; Kumar GD; Chandrasekaran Y; Ganduri R; Patil S ACS Appl Mater Interfaces; 2018 Jan; 10(4):3838-3847. PubMed ID: 29336547 [TBL] [Abstract][Full Text] [Related]
4. Aggregation-induced enhanced green light emission from a simple donor-π-acceptor (D-π-A) material: a structure-property relationship study. Gupta VK; Singh RA Faraday Discuss; 2017 Feb; 196():131-142. PubMed ID: 27892562 [TBL] [Abstract][Full Text] [Related]
5. Starburst triarylamine donor-acceptor-donor quadrupolar derivatives based on cyano-substituted diphenylaminestyrylbenzene: tunable aggregation-induced emission colors and large two-photon absorption cross sections. Wang B; Wang Y; Hua J; Jiang Y; Huang J; Qian S; Tian H Chemistry; 2011 Feb; 17(9):2647-55. PubMed ID: 21264969 [TBL] [Abstract][Full Text] [Related]
6. Rational design of aggregation-induced emission luminogen with weak electron donor-acceptor interaction to achieve highly efficient undoped bilayer OLEDs. Chen L; Jiang Y; Nie H; Hu R; Kwok HS; Huang F; Qin A; Zhao Z; Tang BZ ACS Appl Mater Interfaces; 2014 Oct; 6(19):17215-25. PubMed ID: 25254940 [TBL] [Abstract][Full Text] [Related]
7. Aggregation-induced emission and intermolecular charge transfer effect in triphenylamine fluorophores containing diphenylhydrazone structures. Yang W; Li C; Zhang M; Zhou W; Xue R; Liu H; Li Y Phys Chem Chem Phys; 2016 Oct; 18(40):28052-28060. PubMed ID: 27722298 [TBL] [Abstract][Full Text] [Related]
8. Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer. Tsujimoto H; Ha DG; Markopoulos G; Chae HS; Baldo MA; Swager TM J Am Chem Soc; 2017 Apr; 139(13):4894-4900. PubMed ID: 28345346 [TBL] [Abstract][Full Text] [Related]
9. Tuning the Photophysical and Electroluminescence Properties in Asymmetrically Tetrasubstituted Bipolar Carbazoles by Functional Group Disposition. Konidena RK; Thomas KRJ; Pathak A; Dubey DK; Sahoo S; Jou JH ACS Appl Mater Interfaces; 2018 Jul; 10(28):24013-24027. PubMed ID: 29931980 [TBL] [Abstract][Full Text] [Related]
10. Phenothiazine-phenylquinoline donor-acceptor molecules: effects of structural isomerism on charge transfer photophysics and electroluminescence. Kulkarni AP; Wu PT; Kwon TW; Jenekhe SA J Phys Chem B; 2005 Oct; 109(42):19584-94. PubMed ID: 16853533 [TBL] [Abstract][Full Text] [Related]
12. TICT, and Deep-Blue Electroluminescence from Acceptor-Donor-Acceptor Molecules. Linet A; Nair AG; Achankunju S; Rajeev K; Unni N; Neogi I Chem Asian J; 2024 Oct; 19(20):e202400721. PubMed ID: 39136408 [TBL] [Abstract][Full Text] [Related]
13. Electronic and Photophysical Properties of 9,10-Anthrylene-Bridged B-π-N Donor-Acceptor Molecules with Solid-State Emission in the Yellow to Red Region. Uebe M; Sakamaki D; Ito A Chempluschem; 2019 Sep; 84(9):1305-1313. PubMed ID: 31944063 [TBL] [Abstract][Full Text] [Related]
14. Effect of Slip-Stack Self-Assembly on Aggregation-Induced Emission and Solid-State Luminescence in 1,3-Diarylpropynones. Sivalingam S; Debsharma K; Dasgupta A; Sankararaman S; Prasad E Chempluschem; 2019 Apr; 84(4):392-402. PubMed ID: 31939217 [TBL] [Abstract][Full Text] [Related]
15. Tunable Fluorescence via Self-Assembled Switching of AIE-Active Micelle-like Nanoaggregates. Elsyed AFN; Wong GL; Ameen M; Wu MW; Chang CC Int J Mol Sci; 2023 Jun; 24(12):. PubMed ID: 37373087 [TBL] [Abstract][Full Text] [Related]
16. New Aggregation-Induced Delayed Fluorescence Luminogens With Through-Space Charge Transfer for Efficient Non-doped OLEDs. Zhang P; Zeng J; Guo J; Zhen S; Xiao B; Wang Z; Zhao Z; Tang BZ Front Chem; 2019; 7():199. PubMed ID: 31024889 [TBL] [Abstract][Full Text] [Related]
17. Versatile Donor-π-Acceptor-Type Aggregation-Enhanced Emission Active Fluorophores as Both Highly Efficient Nondoped Emitter and Excellent Host. Wu C; Wu Z; Wang B; Li X; Zhao N; Hu J; Ma D; Wang Q ACS Appl Mater Interfaces; 2017 Sep; 9(38):32946-32956. PubMed ID: 28876045 [TBL] [Abstract][Full Text] [Related]
18. π-Conjugated cyanostilbene derivatives: a unique self-assembly motif for molecular nanostructures with enhanced emission and transport. An BK; Gierschner J; Park SY Acc Chem Res; 2012 Apr; 45(4):544-54. PubMed ID: 22085759 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent turn-on detection and assay of water based on 4-(2-dimethylaminoethyloxy)-N-octadecyl-1,8-naphthalimide with aggregation-induced emission enhancement. Sun Y; Liang X; Wei S; Fan J; Yang X Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():352-8. PubMed ID: 22796432 [TBL] [Abstract][Full Text] [Related]
20. Tunable AIEE fluorescence constructed from a triphenylamine luminogen containing quinoline - application in a reversible and tunable pH sensor. Zhang M; Yang W; Gong T; Zhou W; Xue R Phys Chem Chem Phys; 2017 Aug; 19(32):21672-21682. PubMed ID: 28767113 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]