These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29313830)

  • 1. Exciton diffusion coefficient measurement in ZnO nanowires under electron beam irradiation.
    Donatini F; Pernot J
    Nanotechnology; 2018 Mar; 29(10):105703. PubMed ID: 29313830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron beam dose dependence of surface recombination velocity and surface space charge in semiconductor nanowires.
    Donatini F; Sartel C; Sallet V; Pernot J
    Nanotechnology; 2017 Jun; 28(23):235701. PubMed ID: 28467319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Three E-Beam Techniques for Electric Field Imaging and Carrier Diffusion Length Measurement on the Same Nanowires.
    Donatini F; de Luna Bugallo A; Tchoulfian P; Chicot G; Sartel C; Sallet V; Pernot J
    Nano Lett; 2016 May; 16(5):2938-44. PubMed ID: 27105083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface effects on exciton diffusion in non polar ZnO/ZnMgO heterostructures.
    Sakr G; Sartel C; Sallet V; Lusson A; Patriarche G; Galtier P; Barjon J
    J Phys Condens Matter; 2017 Dec; 29(48):485706. PubMed ID: 29120866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of the optical and structural properties of ZnO nanowires by low-energy Ar+ ion sputtering.
    Allah RF; Ben T; González D; Hortelano V; Martínez O; Plaza JL
    Nanoscale Res Lett; 2013 Apr; 8(1):162. PubMed ID: 23570658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quenching of the luminescence intensity of GaN nanowires under electron beam exposure: impact of C adsorption on the exciton lifetime.
    Lähnemann J; Flissikowski T; Wölz M; Geelhaar L; Grahn HT; Brandt O; Jahn U
    Nanotechnology; 2016 Nov; 27(45):455706. PubMed ID: 27713184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exciton scattering mechanism in a single semiconducting MgZnO nanorod.
    Yoo J; Dang le S; Chon B; Joo T; Yi GC
    Nano Lett; 2012 Feb; 12(2):556-61. PubMed ID: 22214177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatially and angularly resolved cathodoluminescence study of single ZnO nanorods.
    Li C; Gao M; Zhang X; Peng LM; Chen Q
    J Nanosci Nanotechnol; 2010 Nov; 10(11):7158-61. PubMed ID: 21137887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient methodology to correlate structural with optical properties of GaAs nanowires based on scanning electron microscopy.
    Lin WH; Jahn U; Küpers H; Luna E; Lewis RB; Geelhaar L; Brandt O
    Nanotechnology; 2017 Oct; 28(41):415703. PubMed ID: 28767046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exciton polaritons confined in a ZnO nanowire cavity.
    van Vugt LK; Rühle S; Ravindran P; Gerritsen HC; Kuipers L; Vanmaekelbergh D
    Phys Rev Lett; 2006 Oct; 97(14):147401. PubMed ID: 17155289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Observation of the Layer-by-Layer Growth of ZnO Nanopillar by In situ High Resolution Transmission Electron Microscopy.
    Li X; Cheng S; Deng S; Wei X; Zhu J; Chen Q
    Sci Rep; 2017 Jan; 7():40911. PubMed ID: 28098261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum-interference transport through surface layers of indium-doped ZnO nanowires.
    Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2013 Jun; 24(24):245203. PubMed ID: 23689960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Carrier depletion and exciton diffusion in a single ZnO nanowire.
    Hwang JS; Donatini F; Pernot J; Thierry R; Ferret P; Dang le S
    Nanotechnology; 2011 Nov; 22(47):475704. PubMed ID: 22056478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of radiation tolerance in GaAs/AlGaAs core-shell and InP nanowires.
    Li F; Xie X; Gao Q; Tan L; Zhou Y; Yang Q; Ma J; Fu L; Tan HH; Jagadish C
    Nanotechnology; 2018 Jun; 29(22):225703. PubMed ID: 29451131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strain-Gradient Modulated Exciton Emission in Bent ZnO Wires Probed by Cathodoluminescence.
    Fu XW; Li CZ; Fang L; Liu DM; Xu J; Yu DP; Liao ZM
    ACS Nano; 2016 Dec; 10(12):11469-11474. PubMed ID: 28024321
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced photoluminescence and photoconductivity of ZnO nanowires with sputtered Zn.
    Bera A; Ghosh T; Basak D
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2898-903. PubMed ID: 20919682
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation of enhanced cathodoluminescence emissions from ZnO nanocones compared with ZnO nanowire arrays.
    Bae J; Shim EL; Park Y; Kim H; Kim JM; Kang CJ; Choi YJ
    Nanotechnology; 2011 Jul; 22(28):285711. PubMed ID: 21659688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nano-scale distribution of ZnO free exciton luminescence in ZnO:Zn microcrystals and its modification under electron beam excitation.
    Ichimiya M; Horii T; Hirai T; Sawada Y; Minamiguchi M; Ohno N; Ashida M; Itoh T
    J Phys Condens Matter; 2006 Feb; 18(6):1967-75. PubMed ID: 21697569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing electron collection efficiency and effective diffusion length in dye-sensitized solar cells.
    Wong DK; Ku CH; Chen YR; Chen GR; Wu JJ
    Chemphyschem; 2009 Oct; 10(15):2698-702. PubMed ID: 19777522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directional Assembly of ZnO Nanowires via Three-Dimensional Laser Direct Writing.
    Long J; Xiong W; Wei C; Lu C; Wang R; Deng C; Liu H; Fan X; Jiao B; Gao S; Deng L
    Nano Lett; 2020 Jul; 20(7):5159-5166. PubMed ID: 32479087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.