These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 29313830)

  • 21. Sb-Mediated Tuning of Growth- and Exciton Dynamics in Entirely Catalyst-Free GaAsSb Nanowires.
    Jeong HW; Ajay A; Yu H; Döblinger M; Mukhundhan N; Finley JJ; Koblmüller G
    Small; 2023 Apr; 19(16):e2207531. PubMed ID: 36670090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous measurement of static and kinetic friction of ZnO nanowires in situ with a scanning electron microscope.
    Polyakov B; Dorogin LM; Vlassov S; Kink I; Romanov AE; Lohmus R
    Micron; 2012 Nov; 43(11):1140-6. PubMed ID: 22341617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced optical properties and (Zn, Mg) interdiffusion in vapour transport grown ZnO/MgO core/shell nanowires.
    Grinblat G; Borrero-González LJ; Nunes LA; Tirado M; Comedi D
    Nanotechnology; 2014 Jan; 25(3):035705. PubMed ID: 24356615
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complementary cathodoluminescence lifetime imaging configurations in a scanning electron microscope.
    Meuret S; Solà Garcia M; Coenen T; Kieft E; Zeijlemaker H; Lätzel M; Christiansen S; Woo SY; Ra YH; Mi Z; Polman A
    Ultramicroscopy; 2019 Feb; 197():28-38. PubMed ID: 30476703
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for coupling between exciton emissions and surface plasmon in Ni-coated ZnO nanowires.
    Ren QJ; Filippov S; Chen SL; Devika M; Koteeswara Reddy N; Tu CW; Chen WM; Buyanova IA
    Nanotechnology; 2012 Oct; 23(42):425201. PubMed ID: 23037943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The shell effect on the room temperature photoluminescence from ZnO/MgO core/shell nanowires: exciton-phonon coupling and strain.
    Vega NC; Marin O; Tosi E; Grinblat G; Mosquera E; Moreno MS; Tirado M; Comedi D
    Nanotechnology; 2017 Jul; 28(27):275702. PubMed ID: 28525395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth and optical properties of ZnO/Zn
    Pieniążek A; Teisseyre H; Jarosz D; Suffczyński J; Witkowski BS; Kret S; Boćkowski M; Reszka A; Godlewski M; Kozanecki A; Kowalski BJ
    Nanoscale; 2019 Jan; 11(5):2275-2281. PubMed ID: 30657512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strain Loading Mode Dependent Bandgap Deformation Potential in ZnO Micro/Nanowires.
    Fu X; Liao ZM; Liu R; Lin F; Xu J; Zhu R; Zhong W; Liu Y; Guo W; Yu D
    ACS Nano; 2015 Dec; 9(12):11960-7. PubMed ID: 26517647
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrical conduction mechanisms in natively doped ZnO nanowires (II).
    Tsai LT; Chiu SP; Lu JG; Lin JJ
    Nanotechnology; 2010 Apr; 21(14):145202. PubMed ID: 20215656
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Temperature dependence of exciton diffusion in conjugated polymers.
    Mikhnenko OV; Cordella F; Sieval AB; Hummelen JC; Blom PW; Loi MA
    J Phys Chem B; 2008 Sep; 112(37):11601-4. PubMed ID: 18729397
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controlling the exciton emission of gold coated GaAs-AlGaAs core-shell nanowires with an organic spacer layer.
    Kaveh M; Gao Q; Jagadish C; Ge J; Duscher G; Wagner HP
    Nanotechnology; 2016 Dec; 27(48):485204. PubMed ID: 27811405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Piezotronic effects on the optical properties of ZnO nanowires.
    Xu S; Guo W; Du S; Loy MM; Wang N
    Nano Lett; 2012 Nov; 12(11):5802-7. PubMed ID: 23051708
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain.
    Li P; Liao Q; Yang S; Bai X; Huang Y; Yan X; Zhang Z; Liu S; Lin P; Kang Z; Zhang Y
    Nano Lett; 2014 Feb; 14(2):480-5. PubMed ID: 24382199
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exciton drift in semiconductors under uniform strain gradients: application to bent ZnO microwires.
    Fu X; Jacopin G; Shahmohammadi M; Liu R; Benameur M; Ganière JD; Feng J; Guo W; Liao ZM; Deveaud B; Yu D
    ACS Nano; 2014 Apr; 8(4):3412-20. PubMed ID: 24654837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental determination of the absorption cross-section and molar extinction coefficient of CdSe and CdTe nanowires.
    Protasenko V; Bacinello D; Kuno M
    J Phys Chem B; 2006 Dec; 110(50):25322-31. PubMed ID: 17165978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-trapping limited exciton diffusion in a monomeric perylene crystal as revealed by femtosecond transient absorption microscopy.
    Yago T; Tamaki Y; Furube A; Katoh R
    Phys Chem Chem Phys; 2008 Aug; 10(30):4435-41. PubMed ID: 18654683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultra-sensitive detection of zinc oxide nanowires using a quartz crystal microbalance and phosphoric acid DNA.
    Jang K; You J; Park C; Park H; Choi J; Choi CH; Park J; Lee H; Na S
    Nanotechnology; 2016 Sep; 27(36):365501. PubMed ID: 27479871
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication of high performance field-effect transistors and practical Schottky contacts using hydrothermal ZnO nanowires.
    Opoku C; Dahiya AS; Oshman C; Daumont C; Cayrel F; Poulin-Vittrant G; Alquier D; Camara N
    Nanotechnology; 2015 Sep; 26(35):355704. PubMed ID: 26245930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique.
    Broitman E; Soomro MY; Lu J; Willander M; Hultman L
    Phys Chem Chem Phys; 2013 Jul; 15(26):11113-8. PubMed ID: 23722480
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of the photocarrier diffusion length in intrinsic Ge nanowires.
    Shin YS; Lee D; Lee HS; Cho YJ; Kim CJ; Jo MH
    Opt Express; 2011 Mar; 19(7):6119-24. PubMed ID: 21451635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.