These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 29313835)

  • 1. In situ atomic-scale observation of irradiation induced carbon nanocrystalline formation from dense carbon clusters.
    Wang C; Li Z; Ling S; Lei T; Su J
    Nanotechnology; 2018 Mar; 29(11):115602. PubMed ID: 29313835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Self-Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating.
    Wang C; Ling S; Yang J; Rao D; Guo Z
    Small; 2018 Jan; 14(1):. PubMed ID: 29131499
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the graphitization and growth of free-standing nanocrystalline graphene using in situ transmission electron microscopy.
    Shyam Kumar CN; Chakravadhanula VSK; Riaz A; Dehm S; Wang D; Mu X; Flavel B; Krupke R; Kübel C
    Nanoscale; 2017 Sep; 9(35):12835-12842. PubMed ID: 28799608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultra-low friction mechanism of highly sp
    Shi J; Xia T; Wang C; Yuan K; Zhang J
    Phys Chem Chem Phys; 2018 Sep; 20(35):22445-22454. PubMed ID: 29923558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Ni-Catalyzed Graphitization Process of Diamond by
    Romanyuk O; Varga M; Tulic S; Izak T; Jiricek P; Kromka A; Skakalova V; Rezek B
    J Phys Chem C Nanomater Interfaces; 2018 Mar; 122(12):6629-6636. PubMed ID: 30263086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally induced transformations of amorphous carbon nanostructures fabricated by electron beam induced deposition.
    Kulkarni DD; Rykaczewski K; Singamaneni S; Kim S; Fedorov AG; Tsukruk VV
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):710-20. PubMed ID: 21319745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sculpting Nanoscale Functional Channels in Complex Oxides Using Energetic Ions and Electrons.
    Sachan R; Zarkadoula E; Ou X; Trautmann C; Zhang Y; Chisholm MF; Weber WJ
    ACS Appl Mater Interfaces; 2018 May; 10(19):16731-16738. PubMed ID: 29697252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys.
    Guo J; Haberfehlner G; Rosalie J; Li L; Duarte MJ; Kothleitner G; Dehm G; He Y; Pippan R; Zhang Z
    Nat Commun; 2018 Mar; 9(1):946. PubMed ID: 29507370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Graphitization: An Efficient Conversion of Amorphous Carbons to Nanostructured Graphites.
    Jin X; He R; Dai S
    Chemistry; 2017 Aug; 23(48):11455-11459. PubMed ID: 28598566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural characteristics of nanocrystalline copper after carbon ion implantation.
    Lin WM; Wei YH; Du HY; Hou LF; Wang GD; Bi HX; Xu BS
    Micron; 2011 Oct; 42(7):691-4. PubMed ID: 21549609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalyst poisoning by amorphous carbon during carbon nanotube growth: fact or fiction?
    Schünemann C; Schäffel F; Bachmatiuk A; Queitsch U; Sparing M; Rellinghaus B; Lafdi K; Schultz L; Büchner B; Rümmeli MH
    ACS Nano; 2011 Nov; 5(11):8928-34. PubMed ID: 22023292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphitic carbon growth on crystalline and amorphous oxide substrates using molecular beam epitaxy.
    Jerng SK; Seong Yu D; Hong Lee J; Kim C; Yoon S; Chun SH
    Nanoscale Res Lett; 2011 Oct; 6(1):565. PubMed ID: 22029707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ observation of carbon-nanopillar tubulization caused by liquidlike iron particles.
    Ichihashi T; Fujita J; Ishida M; Ochiai Y
    Phys Rev Lett; 2004 May; 92(21):215702. PubMed ID: 15245293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room temperature amorphous to nanocrystalline transformation in ultra-thin films under tensile stress: an in situ TEM study.
    Manoharan MP; Kumar S; Haque MA; Rajagopalan R; Foley HC
    Nanotechnology; 2010 Dec; 21(50):505707. PubMed ID: 21098951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress Writing Textured Graphite Conducting Wires/Patterns in Insulating Amorphous Carbon Matrix as Interconnects.
    Wang DS; Chang SY; Chen TS; Chou TH; Huang YC; Wu JB; Leu MS; Lai HJ
    Sci Rep; 2017 Aug; 7(1):9727. PubMed ID: 28852077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of quenchable amorphous diamond.
    Zeng Z; Yang L; Zeng Q; Lou H; Sheng H; Wen J; Miller DJ; Meng Y; Yang W; Mao WL; Mao HK
    Nat Commun; 2017 Aug; 8(1):322. PubMed ID: 28831044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Creation of pure non-crystalline diamond nanostructures
    Picollo F; Battiato A; Bosia F; Scaffidi Muta F; Olivero P; Rigato V; Rubanov S
    Nanoscale Adv; 2021 Jul; 3(14):4156-4165. PubMed ID: 36132848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combined hydrogen production and storage with subsequent carbon crystallization.
    Lueking AD; Gutierrez HR; Fonseca DA; Narayanan DL; Van Essendelft D; Jain P; Clifford CE
    J Am Chem Soc; 2006 Jun; 128(24):7758-60. PubMed ID: 16771488
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Li Z; Wang ZL; Wang Z
    RSC Adv; 2018 Jun; 8(42):23522-23528. PubMed ID: 35540301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Observation of Crystalline Silicon Growth from SiO
    Yu K; Xu T; Wu X; Wang W; Zhang H; Zhang Q; Tang L; Sun L
    Research (Wash D C); 2019; 2019():3289247. PubMed ID: 31912032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.