These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 29314052)
1. OsPRR37 confers an expanded regulation of the diurnal rhythms of the transcriptome and photoperiodic flowering pathways in rice. Liu C; Qu X; Zhou Y; Song G; Abiri N; Xiao Y; Liang F; Jiang D; Hu Z; Yang D Plant Cell Environ; 2018 Mar; 41(3):630-645. PubMed ID: 29314052 [TBL] [Abstract][Full Text] [Related]
2. Os-GIGANTEA confers robust diurnal rhythms on the global transcriptome of rice in the field. Izawa T; Mihara M; Suzuki Y; Gupta M; Itoh H; Nagano AJ; Motoyama R; Sawada Y; Yano M; Hirai MY; Makino A; Nagamura Y Plant Cell; 2011 May; 23(5):1741-55. PubMed ID: 21571948 [TBL] [Abstract][Full Text] [Related]
3. OsBBX14 delays heading date by repressing florigen gene expression under long and short-day conditions in rice. Bai B; Zhao J; Li Y; Zhang F; Zhou J; Chen F; Xie X Plant Sci; 2016 Jun; 247():25-34. PubMed ID: 27095397 [TBL] [Abstract][Full Text] [Related]
4. OsCOL10, a CONSTANS-Like Gene, Functions as a Flowering Time Repressor Downstream of Ghd7 in Rice. Tan J; Jin M; Wang J; Wu F; Sheng P; Cheng Z; Wang J; Zheng X; Chen L; Wang M; Zhu S; Guo X; Zhang X; Liu X; Wang C; Wang H; Wu C; Wan J Plant Cell Physiol; 2016 Apr; 57(4):798-812. PubMed ID: 26872834 [TBL] [Abstract][Full Text] [Related]
5. CONSTANS-like 9 (COL9) delays the flowering time in Oryza sativa by repressing the Ehd1 pathway. Liu H; Gu F; Dong S; Liu W; Wang H; Chen Z; Wang J Biochem Biophys Res Commun; 2016 Oct; 479(2):173-178. PubMed ID: 27620492 [TBL] [Abstract][Full Text] [Related]
6. OsLHY is involved in regulating flowering through the Hd1- and Ehd1- mediated pathways in rice (Oryza sativa L.). Li C; Liu XJ; Yan Y; Alam MS; Liu Z; Yang ZK; Tao RF; Yue EK; Duan MH; Xu JH Plant Sci; 2022 Feb; 315():111145. PubMed ID: 35067308 [TBL] [Abstract][Full Text] [Related]
7. OsELF3 is involved in circadian clock regulation for promoting flowering under long-day conditions in rice. Yang Y; Peng Q; Chen GX; Li XH; Wu CY Mol Plant; 2013 Jan; 6(1):202-15. PubMed ID: 22888152 [TBL] [Abstract][Full Text] [Related]
8. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. Campoli C; Shtaya M; Davis SJ; von Korff M BMC Plant Biol; 2012 Jun; 12():97. PubMed ID: 22720803 [TBL] [Abstract][Full Text] [Related]
9. Constitutive expression of the GIGANTEA ortholog affects circadian rhythms and suppresses one-shot induction of flowering in Pharbitis nil, a typical short-day plant. Higuchi Y; Sage-Ono K; Sasaki R; Ohtsuki N; Hoshino A; Iida S; Kamada H; Ono M Plant Cell Physiol; 2011 Apr; 52(4):638-50. PubMed ID: 21382978 [TBL] [Abstract][Full Text] [Related]
10. Analysis of PHOTOPERIOD SENSITIVITY5 sheds light on the role of phytochromes in photoperiodic flowering in rice. Andrés F; Galbraith DW; Talón M; Domingo C Plant Physiol; 2009 Oct; 151(2):681-90. PubMed ID: 19675157 [TBL] [Abstract][Full Text] [Related]
11. The role of casein kinase II in flowering time regulation has diversified during evolution. Ogiso E; Takahashi Y; Sasaki T; Yano M; Izawa T Plant Physiol; 2010 Feb; 152(2):808-20. PubMed ID: 20007447 [TBL] [Abstract][Full Text] [Related]
12. Physiological significance of the plant circadian clock in natural field conditions. Izawa T Plant Cell Environ; 2012 Oct; 35(10):1729-41. PubMed ID: 22681566 [TBL] [Abstract][Full Text] [Related]
13. Global profiling of rice and poplar transcriptomes highlights key conserved circadian-controlled pathways and cis-regulatory modules. Filichkin SA; Breton G; Priest HD; Dharmawardhana P; Jaiswal P; Fox SE; Michael TP; Chory J; Kay SA; Mockler TC PLoS One; 2011; 6(6):e16907. PubMed ID: 21694767 [TBL] [Abstract][Full Text] [Related]
14. OsELF3-1, an ortholog of Arabidopsis early flowering 3, regulates rice circadian rhythm and photoperiodic flowering. Zhao J; Huang X; Ouyang X; Chen W; Du A; Zhu L; Wang S; Deng XW; Li S PLoS One; 2012; 7(8):e43705. PubMed ID: 22912900 [TBL] [Abstract][Full Text] [Related]
15. OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Kim SK; Yun CH; Lee JH; Jang YH; Park HY; Kim JK Planta; 2008 Jul; 228(2):355-65. PubMed ID: 18449564 [TBL] [Abstract][Full Text] [Related]
16. Conserved expression profiles of circadian clock-related genes in two Lemna species showing long-day and short-day photoperiodic flowering responses. Miwa K; Serikawa M; Suzuki S; Kondo T; Oyama T Plant Cell Physiol; 2006 May; 47(5):601-12. PubMed ID: 16524874 [TBL] [Abstract][Full Text] [Related]
17. Drought stress modulates diurnal oscillations of circadian clock and drought-responsive genes in Oryza sativa L. Li J; Liu YH; Zhang Y; Chen C; Yu X; Yu SW Yi Chuan; 2017 Sep; 39(9):837-846. PubMed ID: 28936981 [TBL] [Abstract][Full Text] [Related]
18. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. Liang L; Zhang Z; Cheng N; Liu H; Song S; Hu Y; Zhou X; Zhang J; Xing Y Plant Cell Environ; 2021 Mar; 44(3):842-855. PubMed ID: 33377200 [TBL] [Abstract][Full Text] [Related]
19. Rice FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (OsFKF1) promotes flowering independent of photoperiod. Han SH; Yoo SC; Lee BD; An G; Paek NC Plant Cell Environ; 2015 Dec; 38(12):2527-40. PubMed ID: 25850808 [TBL] [Abstract][Full Text] [Related]
20. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. Park MJ; Kwon YJ; Gil KE; Park CM BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]