These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29314245)

  • 1. Accurate geometries for "Mountain pass" regions of the Ramachandran plot using quantum chemical calculations.
    Jiang Z; Biczysko M; Moriarty NW
    Proteins; 2018 Mar; 86(3):273-278. PubMed ID: 29314245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental conformational energy maps of proteins and peptides.
    Balaji GA; Nagendra HG; Balaji VN; Rao SN
    Proteins; 2017 Jun; 85(6):979-1001. PubMed ID: 28168743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
    Aliev AE; Courtier-Murias D
    J Phys Chem B; 2010 Sep; 114(38):12358-75. PubMed ID: 20825228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB.
    Maier JA; Martinez C; Kasavajhala K; Wickstrom L; Hauser KE; Simmerling C
    J Chem Theory Comput; 2015 Aug; 11(8):3696-713. PubMed ID: 26574453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating amber force fields using computed NMR chemical shifts.
    Koes DR; Vries JK
    Proteins; 2017 Oct; 85(10):1944-1956. PubMed ID: 28688107
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput quantum-mechanics/molecular-mechanics (ONIOM) macromolecular crystallographic refinement with PHENIX/DivCon: the impact of mixed Hamiltonian methods on ligand and protein structure.
    Borbulevych O; Martin RI; Westerhoff LM
    Acta Crystallogr D Struct Biol; 2018 Nov; 74(Pt 11):1063-1077. PubMed ID: 30387765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum chemical investigations on intraresidue carbonyl-carbonyl contacts in aspartates of high-resolution protein structures.
    Pal TK; Sankararamakrishnan R
    J Phys Chem B; 2010 Jan; 114(2):1038-49. PubMed ID: 20039723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix.
    Moriarty NW; Janowski PA; Swails JM; Nguyen H; Richardson JS; Case DA; Adams PD
    Acta Crystallogr D Struct Biol; 2020 Jan; 76(Pt 1):51-62. PubMed ID: 31909743
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Density functional theory study of the conformational space of an infinitely long polypeptide chain.
    Ireta J; Scheffler M
    J Chem Phys; 2009 Aug; 131(8):085104. PubMed ID: 19725637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors affecting the amplitude of the τ angle in proteins: a revisitation.
    Balasco N; Esposito L; Vitagliano L
    Acta Crystallogr D Struct Biol; 2017 Jul; 73(Pt 7):618-625. PubMed ID: 28695862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations.
    Duan Y; Wu C; Chowdhury S; Lee MC; Xiong G; Zhang W; Yang R; Cieplak P; Luo R; Lee T; Caldwell J; Wang J; Kollman P
    J Comput Chem; 2003 Dec; 24(16):1999-2012. PubMed ID: 14531054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution.
    Tian C; Kasavajhala K; Belfon KAA; Raguette L; Huang H; Migues AN; Bickel J; Wang Y; Pincay J; Wu Q; Simmerling C
    J Chem Theory Comput; 2020 Jan; 16(1):528-552. PubMed ID: 31714766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemistry can locally improve protein crystal structures.
    Ryde U; Nilsson K
    J Am Chem Soc; 2003 Nov; 125(47):14232-3. PubMed ID: 14624544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The determinants of bond angle variability in protein/peptide backbones: A comprehensive statistical/quantum mechanics analysis.
    Improta R; Vitagliano L; Esposito L
    Proteins; 2015 Nov; 83(11):1973-86. PubMed ID: 26264789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure validation by Calpha geometry: phi,psi and Cbeta deviation.
    Lovell SC; Davis IW; Arendall WB; de Bakker PI; Word JM; Prisant MG; Richardson JS; Richardson DC
    Proteins; 2003 Feb; 50(3):437-50. PubMed ID: 12557186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate assessment of the strain energy in a protein-bound drug using QM/MM X-ray refinement and converged quantum chemistry.
    Fu Z; Li X; Merz KM
    J Comput Chem; 2011 Sep; 32(12):2587-97. PubMed ID: 21598285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tri-peptide reference structures for the calculation of relative solvent accessible surface area in protein amino acid residues.
    Topham CM; Smith JC
    Comput Biol Chem; 2015 Feb; 54():33-43. PubMed ID: 25544680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of force fields on the conformational and dynamic properties of amyloid β(1-40) dimer explored by replica exchange molecular dynamics simulations.
    Watts CR; Gregory A; Frisbie C; Lovas S
    Proteins; 2018 Mar; 86(3):279-300. PubMed ID: 29235155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved side-chain torsion potentials for the Amber ff99SB protein force field.
    Lindorff-Larsen K; Piana S; Palmo K; Maragakis P; Klepeis JL; Dror RO; Shaw DE
    Proteins; 2010 Jun; 78(8):1950-8. PubMed ID: 20408171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.