These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 29314263)

  • 21. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Easy alignment and effective nucleation activity of ramie fibers in injection-molded poly(lactic acid) biocomposites.
    Xu H; Liu CY; Chen C; Hsiao BS; Zhong GJ; Li ZM
    Biopolymers; 2012 Oct; 97(10):825-39. PubMed ID: 22806502
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation and characterization of cellulose nanocrystals from spruce bark in a biorefinery perspective.
    Le Normand M; Moriana R; Ek M
    Carbohydr Polym; 2014 Oct; 111():979-87. PubMed ID: 25037439
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Xyloglucan coating for enhanced strength and toughness in wood fibre networks.
    Vilaseca F; Serra A; Kochumalayil JJ
    Carbohydr Polym; 2020 Feb; 229():115540. PubMed ID: 31826448
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and functional properties of cell wall polymers from two cherry varieties at two developmental stages.
    Basanta MF; de Escalada Plá MF; Stortz CA; Rojas AM
    Carbohydr Polym; 2013 Jan; 92(1):830-41. PubMed ID: 23218373
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The fracture toughness of eggshell.
    Taylor D; Walsh M; Cullen A; O'Reilly P
    Acta Biomater; 2016 Jun; 37():21-7. PubMed ID: 27109761
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites.
    Pommet M; Juntaro J; Heng JY; Mantalaris A; Lee AF; Wilson K; Kalinka G; Shaffer MS; Bismarck A
    Biomacromolecules; 2008 Jun; 9(6):1643-51. PubMed ID: 18491942
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions.
    Malho JM; Ouellet-Plamondon C; Rüggeberg M; Laaksonen P; Ikkala O; Burgert I; Linder MB
    Biomacromolecules; 2015 Jan; 16(1):311-8. PubMed ID: 25420190
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure-Mechanical Property Relations of Skin-Core Regions of Poly(p-phenylene terephthalamide) Single Fiber.
    Chabi S; Dikin DA; Yin J; Percec S; Ren F
    Sci Rep; 2019 Jan; 9(1):740. PubMed ID: 30679742
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Morphology and mechanical properties of poly(β-hydroxybutyrate)/poly(ε-caprolactone) blends controlled with cellulosic particles.
    Chen J; Wang Y; Yin Z; Tam KC; Wu D
    Carbohydr Polym; 2017 Oct; 174():217-225. PubMed ID: 28821061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of crystal orientation on cellulose nanocrystals-cellulose acetate nanocomposite fibers prepared by dry spinning.
    Chen S; Schueneman G; Pipes RB; Youngblood J; Moon RJ
    Biomacromolecules; 2014 Oct; 15(10):3827-35. PubMed ID: 25226382
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fast-Growing Bacterial Cellulose with Outstanding Mechanical Properties via Cross-Linking by Multivalent Ions.
    Knöller A; Widenmeyer M; Bill J; Burghard Z
    Materials (Basel); 2020 Jun; 13(12):. PubMed ID: 32599920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioinspired Design of Strong, Tough, and Highly Conductive Polyol-Polypyrrole Composites for Flexible Electronics.
    Gao F; Zhang N; Fang X; Ma M
    ACS Appl Mater Interfaces; 2017 Feb; 9(7):5692-5698. PubMed ID: 28168873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The molecular basis of plant cell wall extension.
    Darley CP; Forrester AM; McQueen-Mason SJ
    Plant Mol Biol; 2001 Sep; 47(1-2):179-95. PubMed ID: 11554471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. 3D-Printed Ultratough Hydrogel Structures with Titin-like Domains.
    Zhu F; Cheng L; Wang ZJ; Hong W; Wu ZL; Yin J; Qian J; Zheng Q
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11363-11367. PubMed ID: 28317377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly Transparent and Toughened Poly(methyl methacrylate) Nanocomposite Films Containing Networks of Cellulose Nanofibrils.
    Dong H; Sliozberg YR; Snyder JF; Steele J; Chantawansri TL; Orlicki JA; Walck SD; Reiner RS; Rudie AW
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25464-72. PubMed ID: 26513136
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hybrid Cellulose-Glass Fiber Composites for Automotive Applications.
    Annandarajah C; Langhorst A; Kiziltas A; Grewell D; Mielewski D; Montazami R
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31569447
    [No Abstract]   [Full Text] [Related]  

  • 38. Cellulose nanopaper structures of high toughness.
    Henriksson M; Berglund LA; Isaksson P; Lindström T; Nishino T
    Biomacromolecules; 2008 Jun; 9(6):1579-85. PubMed ID: 18498189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tuning the mechanical properties of glass fiber-reinforced bismaleimide-triazine resin composites by constructing a flexible bridge at the interface.
    Zeng X; Yu S; Lai M; Sun R; Wong CP
    Sci Technol Adv Mater; 2013 Dec; 14(6):065001. PubMed ID: 27877621
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellulose-glycerol-polyvinyl alcohol composite films for food packaging: Evaluation of water adsorption, mechanical properties, light-barrier properties and transparency.
    Cazón P; Vázquez M; Velazquez G
    Carbohydr Polym; 2018 Sep; 195():432-443. PubMed ID: 29804996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.