BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 29314280)

  • 1. Fabrication of silver chloride nanoparticles using a plant serine protease in combination with photoactivation and investigation of their biological activities.
    Siritapetawee J; Limphirat W; Nantapong N; Songthamwat D
    Biotechnol Appl Biochem; 2018 Jul; 65(4):572-579. PubMed ID: 29314280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.
    Fouda A; Hassan SE; Abdo AM; El-Gamal MS
    Biol Trace Elem Res; 2020 Jun; 195(2):707-724. PubMed ID: 31486967
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antibacterial activity of silver nanoparticles synthesized from serine.
    Jayaprakash N; Judith Vijaya J; John Kennedy L; Priadharsini K; Palani P
    Mater Sci Eng C Mater Biol Appl; 2015 Apr; 49():316-322. PubMed ID: 25686955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa.
    Patil MP; Seo YB; Kim GD
    Microb Pathog; 2018 Mar; 116():84-90. PubMed ID: 29339306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinneretia THG-SQI4 mediated biosynthesis of silver nanoparticles and its antimicrobial efficacy.
    Singh H; Du J; Yi TH
    Artif Cells Nanomed Biotechnol; 2017 May; 45(3):602-608. PubMed ID: 28211298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phyto-mediated biosynthesis of silver nanoparticles using the rind extract of watermelon (Citrullus lanatus) under photo-catalyzed condition and investigation of its antibacterial, anticandidal and antioxidant efficacy.
    Patra JK; Das G; Baek KH
    J Photochem Photobiol B; 2016 Aug; 161():200-10. PubMed ID: 27261701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photobiosynthesis of stable and functional silver/silver chloride nanoparticles with hydrolytic activity using hyperthermophilic β-glucosidases with industrial potential.
    Araújo JN; Tofanello A; da Silva VM; Sato JAP; Squina FM; Nantes IL; Garcia W
    Int J Biol Macromol; 2017 Sep; 102():84-91. PubMed ID: 28400186
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesised AgCl NPs using
    Rezaei Somee L; Ghadam P; Abdi-Ali A; Fallah S; Panahi G
    IET Nanobiotechnol; 2018 Sep; 12(6):764-772. PubMed ID: 30104450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of Ag/AgX (X = Cl, I) nanoparticles toward antimicrobial, UV-protected and self-cleanable viscose fibers.
    Rehan M; Khattab TA; Barohum A; Gätjen L; Wilken R
    Carbohydr Polym; 2018 Oct; 197():227-236. PubMed ID: 30007608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review on biosynthesis of silver nanoparticles and their biocidal properties.
    Siddiqi KS; Husen A; Rao RAK
    J Nanobiotechnology; 2018 Feb; 16(1):14. PubMed ID: 29452593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of Ag
    Kiani FA; Shamraiz U; Badshah A; Tabassum S; Ambreen M; Patujo JA
    Artif Cells Nanomed Biotechnol; 2018; 46(sup3):S1083-S1091. PubMed ID: 30449180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.).
    Mahendra C; Murali M; Manasa G; Ponnamma P; Abhilash MR; Lakshmeesha TR; Satish A; Amruthesh KN; Sudarshana MS
    Microb Pathog; 2017 Sep; 110():620-629. PubMed ID: 28778822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Green synthesis of silver nanoparticles using Croton sparsiflorus morong leaf extract and their antibacterial and antifungal activities.
    Kathiravan V; Ravi S; Ashokkumar S; Velmurugan S; Elumalai K; Khatiwada CP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():200-5. PubMed ID: 25561298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of pure and moxifloxacin functionalized silver oxide nanoparticles for photocatalytic and antimicrobial activity.
    Haq S; Rehman W; Waseem M; Meynen V; Awan SU; Saeed S; Iqbal N
    J Photochem Photobiol B; 2018 Sep; 186():116-124. PubMed ID: 30036828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controllable biogenic synthesis of intracellular silver/silver chloride nanoparticles by
    Alamri SAM; Hashem M; Nafady NA; Sayed MA; Alshehri AM; El-Alshaboury GA
    J Microbiol Biotechnol; 2018 Jun; 28(6):917-930. PubMed ID: 29847861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the effect of biosynthesized silver nanoparticles as antibiofilm on bacterial clinical isolates.
    Neihaya HZ; Zaman HH
    Microb Pathog; 2018 Mar; 116():200-208. PubMed ID: 29414608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina.
    Spagnoletti FN; Spedalieri C; Kronberg F; Giacometti R
    J Environ Manage; 2019 Feb; 231():457-466. PubMed ID: 30388644
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biogenic synthesis of iron oxide nanoparticles using Agrewia optiva and Prunus persica phyto species: Characterization, antibacterial and antioxidant activity.
    Mirza AU; Kareem A; Nami SAA; Khan MS; Rehman S; Bhat SA; Mohammad A; Nishat N
    J Photochem Photobiol B; 2018 Aug; 185():262-274. PubMed ID: 29981488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green synthesis of AgCl/Ag
    Aletayeb P; Ghadam P; Mohammadi P
    IET Nanobiotechnol; 2020 Oct; 14(8):707-713. PubMed ID: 33108328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of silver nanoparticles using Cynodon dactylon leaves and assessment of their antibacterial activity.
    Sahu N; Soni D; Chandrashekhar B; Sarangi BK; Satpute D; Pandey RA
    Bioprocess Biosyst Eng; 2013 Jul; 36(7):999-1004. PubMed ID: 23111848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.