These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29314496)

  • 1. A Highly Stable Copper-Based Catalyst for Clarifying the Catalytic Roles of Cu
    Yang H; Chen Y; Cui X; Wang G; Cen Y; Deng T; Yan W; Gao J; Zhu S; Olsbye U; Wang J; Fan W
    Angew Chem Int Ed Engl; 2018 Feb; 57(7):1836-1840. PubMed ID: 29314496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methanol Synthesis and Decomposition Reactions Catalyzed by a Model Catalyst Developed from Bis(1,5-diphenyl-1,3,5-pentanetrionato)dicopper(II)/Silica.
    Ranaweera SA; Henry WP; White MG
    ACS Omega; 2017 Sep; 2(9):5949-5961. PubMed ID: 31457849
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic insights into the dehydrogenation of formaldehyde, formic acid and methanol using the Pt
    Phan TT; Dao LTT; Giang LPT; Nguyen MT; Nguyen HMT
    J Mol Graph Model; 2022 Mar; 111():108096. PubMed ID: 34875503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A CuNi Alloy-Carbon Layer Core-Shell Catalyst for Highly Efficient Conversion of Aqueous Formaldehyde to Hydrogen at Room Temperature.
    Zhou Z; Ng YH; Xu S; Yang S; Gao Q; Cai X; Liao J; Fang Y; Zhang S
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37299-37307. PubMed ID: 34324293
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuning the properties of copper-based catalysts based on molecular in situ studies of model systems.
    Stacchiola DJ
    Acc Chem Res; 2015 Jul; 48(7):2151-8. PubMed ID: 26103058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cu Nanocluster-Loaded TiO
    Yu F; Chen L; Li X; Shen X; Zhao H; Duan C; Chen Q
    ACS Appl Mater Interfaces; 2021 Apr; 13(16):18619-18626. PubMed ID: 33848135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamental studies of methanol synthesis from CO(2) hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001).
    Yang Y; Evans J; Rodriguez JA; White MG; Liu P
    Phys Chem Chem Phys; 2010 Sep; 12(33):9909-17. PubMed ID: 20567756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonoxidative Dehydrogenation of Methanol to Methyl Formate through Highly Stable and Reusable CuMgO-Based Catalysts.
    Yuan DJ; Hengne AM; Saih Y; Huang KW
    ACS Omega; 2019 Jan; 4(1):1854-1860. PubMed ID: 31459440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study.
    Chen ZX; Neyman KM; Lim KH; Rösch N
    Langmuir; 2004 Sep; 20(19):8068-77. PubMed ID: 15350074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to Comment on "Active sites for CO
    Kattel S; Ramírez PJ; Chen JG; Rodriguez JA; Liu P
    Science; 2017 Sep; 357(6354):. PubMed ID: 28860355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing Cu
    Meng H; Yang Y; Shen T; Yin Z; Wang L; Liu W; Yin P; Ren Z; Zheng L; Zhang J; Xiao FS; Wei M
    Nat Commun; 2023 Dec; 14(1):7980. PubMed ID: 38042907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capsule-Structured Copper-Zinc Catalyst for Highly Efficient Hydrogenation of Carbon Dioxide to Methanol.
    Guo Y; Guo X; Song C; Han X; Liu H; Zhao Z
    ChemSusChem; 2019 Nov; 12(22):4916-4926. PubMed ID: 31560446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methanol decomposition reactions over a boron-doped graphene supported Ru-Pt catalyst.
    Damte JY; Lyu SL; Leggesse EG; Jiang JC
    Phys Chem Chem Phys; 2018 Apr; 20(14):9355-9363. PubMed ID: 29564450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacing with silica boosts the catalysis of copper.
    Xu C; Chen G; Zhao Y; Liu P; Duan X; Gu L; Fu G; Yuan Y; Zheng N
    Nat Commun; 2018 Aug; 9(1):3367. PubMed ID: 30135546
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UHV studies of methanol decomposition on mono- and bimetallic CoPd nanoparticles supported on thin alumina films.
    Nowitzki T; Borchert H; Jürgens B; Risse T; Zielasek V; Bäumer M
    Chemphyschem; 2008 Apr; 9(5):729-39. PubMed ID: 18348198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative density functional study of methanol decomposition on Cu4 and Co4 clusters.
    Mehmood F; Greeley J; Zapol P; Curtiss LA
    J Phys Chem B; 2010 Nov; 114(45):14458-66. PubMed ID: 20704288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogenation of CO
    Palomino RM; Ramírez PJ; Liu Z; Hamlyn R; Waluyo I; Mahapatra M; Orozco I; Hunt A; Simonovis JP; Senanayake SD; Rodriguez JA
    J Phys Chem B; 2018 Jan; 122(2):794-800. PubMed ID: 28825484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid three-step cleavage of RNA and DNA model systems promoted by a dinuclear Cu(II) complex in methanol. energetic origins of the catalytic efficacy.
    Lu ZL; Liu CT; Neverov AA; Brown RS
    J Am Chem Soc; 2007 Sep; 129(37):11642-52. PubMed ID: 17715924
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.
    Tang QL; Zou WT; Huang RK; Wang Q; Duan XX
    Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.