These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 29314550)
1. The phosphorus-rich signature of fire in the soil-plant system: a global meta-analysis. Butler OM; Elser JJ; Lewis T; Mackey B; Chen C Ecol Lett; 2018 Mar; 21(3):335-344. PubMed ID: 29314550 [TBL] [Abstract][Full Text] [Related]
2. High-frequency fire alters C : N : P stoichiometry in forest litter. Toberman H; Chen C; Lewis T; Elser JJ Glob Chang Biol; 2014 Jul; 20(7):2321-31. PubMed ID: 24132817 [TBL] [Abstract][Full Text] [Related]
3. The stoichiometric legacy of fire regime regulates the roles of micro-organisms and invertebrates in decomposition. Butler OM; Lewis T; Rezaei Rashti M; Maunsell SC; Elser JJ; Chen C Ecology; 2019 Jul; 100(7):e02732. PubMed ID: 30993678 [TBL] [Abstract][Full Text] [Related]
4. Ecology of Australia: the effects of nutrient-poor soils and intense fires. Orians GH; Milewski AV Biol Rev Camb Philos Soc; 2007 Aug; 82(3):393-423. PubMed ID: 17624961 [TBL] [Abstract][Full Text] [Related]
5. Fire decreases soil enzyme activities and reorganizes microbially mediated nutrient cycles: A meta-analysis. Zhou Y; Biro A; Wong MY; Batterman SA; Staver AC Ecology; 2022 Nov; 103(11):e3807. PubMed ID: 35811475 [TBL] [Abstract][Full Text] [Related]
6. Fire alters ecosystem carbon and nutrients but not plant nutrient stoichiometry or composition in tropical savanna. Pellegrini AF; Hedin LO; Staver AC; Govender N Ecology; 2015 May; 96(5):1275-85. PubMed ID: 26236841 [TBL] [Abstract][Full Text] [Related]
7. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Pellegrini AFA; Ahlström A; Hobbie SE; Reich PB; Nieradzik LP; Staver AC; Scharenbroch BC; Jumpponen A; Anderegg WRL; Randerson JT; Jackson RB Nature; 2018 Jan; 553(7687):194-198. PubMed ID: 29227988 [TBL] [Abstract][Full Text] [Related]
8. [C:N:P stoichiometry characteristics of litter and soil of forests in Great Xing'an Mountains with different fire years.]. Yang XF; Bao XL; Hu GQ; Shao S; Zhou F; Ye JS; Xie HT; Liang C Ying Yong Sheng Tai Xue Bao; 2016 May; 27(5):1359-1367. PubMed ID: 29732795 [TBL] [Abstract][Full Text] [Related]
9. Smouldering fire in a nutrient-limited wetland ecosystem: Long-lasting changes in water and soil chemistry facilitate shrub expansion into a drained burned fen. Sulwiński M; Mętrak M; Wilk M; Suska-Malawska M Sci Total Environ; 2020 Dec; 746():141142. PubMed ID: 32739756 [TBL] [Abstract][Full Text] [Related]
10. Variation in soil enzyme activity as a function of vegetation amount, type, and spatial structure in fire-prone Mediterranean shrublands. Mayor ÁG; Goirán SB; Vallejo VR; Bautista S Sci Total Environ; 2016 Dec; 573():1209-1216. PubMed ID: 27060055 [TBL] [Abstract][Full Text] [Related]
11. Litter removal through fire - A key process for wetland vegetation and ecosystem dynamics. Heim RJ; Heim W; Darman GF; Heinken T; Smirenski SM; Hölzel N Sci Total Environ; 2021 Feb; 755(Pt 2):142659. PubMed ID: 33049535 [TBL] [Abstract][Full Text] [Related]
12. Nutrient cycling responses to fire frequency in the Kruger National Park (South Africa) as indicated by stable isotope analysis. Aranibar JN; Macko SA; Anderson IC; Potgieter AL; Sowry R; Shugart HH Isotopes Environ Health Stud; 2003 Jun; 39(2):141-58. PubMed ID: 12872806 [TBL] [Abstract][Full Text] [Related]
13. Effects of fire frequency on oak litter decomposition and nitrogen dynamics. Hernández DL; Hobbie SE Oecologia; 2008 Dec; 158(3):535-43. PubMed ID: 18850116 [TBL] [Abstract][Full Text] [Related]
14. Effects of fire alone or combined with thinning on tissue nutrient concentrations and nutrient resorption in Desmodium nudiflorum. Huang J; Boerner RE Oecologia; 2007 Aug; 153(2):233-43. PubMed ID: 17453253 [TBL] [Abstract][Full Text] [Related]
15. Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global meta-analysis. Li J; Pei J; Liu J; Wu J; Li B; Fang C; Nie M Glob Chang Biol; 2021 Sep; 27(17):4196-4206. PubMed ID: 34101948 [TBL] [Abstract][Full Text] [Related]
16. Forest restoration treatments have subtle long-term effects on soil C and N cycling in mixed conifer forests. Ganzlin PW; Gundale MJ; Becknell RE; Cleveland CC Ecol Appl; 2016 Jul; 26(5):1503-1516. PubMed ID: 27755759 [TBL] [Abstract][Full Text] [Related]
17. Alleviation of nutrient co-limitation induces regime shifts in post-fire community composition and productivity in Arctic tundra. Klupar I; Rocha AV; Rastetter EB Glob Chang Biol; 2021 Jul; 27(14):3324-3335. PubMed ID: 33960082 [TBL] [Abstract][Full Text] [Related]
18. Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades. Qian Y; Miao SL; Gu B; Li YC J Environ Qual; 2009; 38(2):451-64. PubMed ID: 19202015 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of surface and peat fire on soil constituents in a degraded wetland of the northern Florida Everglades. Smith SM; Newman S; Garrett PB; Leeds JA J Environ Qual; 2001; 30(6):1998-2005. PubMed ID: 11790006 [TBL] [Abstract][Full Text] [Related]
20. Long-term effects of wildfire on available soil nutrient composition and stoichiometry in a Chinese boreal forest. Kong JJ; Yang J; Bai E Sci Total Environ; 2018 Nov; 642():1353-1361. PubMed ID: 30045515 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]