These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 29314575)
1. Bioerosion in a changing world: a conceptual framework. Davidson TM; Altieri AH; Ruiz GM; Torchin ME Ecol Lett; 2018 Mar; 21(3):422-438. PubMed ID: 29314575 [TBL] [Abstract][Full Text] [Related]
2. A global database and "state of the field" review of research into ecosystem engineering by land animals. Coggan NV; Hayward MW; Gibb H J Anim Ecol; 2018 Jul; 87(4):974-994. PubMed ID: 29488217 [TBL] [Abstract][Full Text] [Related]
3. Effects of air pollution on ecosystems and biological diversity in the eastern United States. Lovett GM; Tear TH; Evers DC; Findlay SE; Cosby BJ; Dunscomb JK; Driscoll CT; Weathers KC Ann N Y Acad Sci; 2009 Apr; 1162():99-135. PubMed ID: 19432647 [TBL] [Abstract][Full Text] [Related]
4. Interactive effects of climate change with nutrients, mercury, and freshwater acidification on key taxa in the North Atlantic Landscape Conservation Cooperative region. Pinkney AE; Driscoll CT; Evers DC; Hooper MJ; Horan J; Jones JW; Lazarus RS; Marshall HG; Milliken A; Rattner BA; Schmerfeld J; Sparling DW Integr Environ Assess Manag; 2015 Jul; 11(3):355-69. PubMed ID: 25556986 [TBL] [Abstract][Full Text] [Related]
5. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview. Holyoak M; Heath SK Integr Zool; 2016 Jan; 11(1):40-59. PubMed ID: 26458303 [TBL] [Abstract][Full Text] [Related]
6. Biotic and anthropogenic forces rival climatic/abiotic factors in determining global plant population growth and fitness. Morris WF; Ehrlén J; Dahlgren JP; Loomis AK; Louthan AM Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1107-1112. PubMed ID: 31888999 [TBL] [Abstract][Full Text] [Related]
7. Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Lyons DA; Arvanitidis C; Blight AJ; Chatzinikolaou E; Guy-Haim T; Kotta J; Orav-Kotta H; Queirós AM; Rilov G; Somerfield PJ; Crowe TP Glob Chang Biol; 2014 Sep; 20(9):2712-24. PubMed ID: 24890042 [TBL] [Abstract][Full Text] [Related]
8. Characterizing man-made and natural modifications of microbial diversity and activity in coastal ecosystems. Paerl HW; Dyble J; Twomey L; Pinckney JL; Nelson J; Kerkhof L Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):487-507. PubMed ID: 12448745 [TBL] [Abstract][Full Text] [Related]
9. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions. Mahmoud SH; Gan TY Sci Total Environ; 2018 Aug; 633():1329-1344. PubMed ID: 29758885 [TBL] [Abstract][Full Text] [Related]
10. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach. Singh GG; Sinner J; Ellis J; Kandlikar M; Halpern BS; Satterfield T; Chan KMA J Environ Manage; 2017 Sep; 199():229-241. PubMed ID: 28549274 [TBL] [Abstract][Full Text] [Related]
11. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi-arid ecosystems. Nielsen UN; Ball BA Glob Chang Biol; 2015 Apr; 21(4):1407-21. PubMed ID: 25363193 [TBL] [Abstract][Full Text] [Related]
12. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers. Tomas F; Martínez-Crego B; Hernán G; Santos R Glob Chang Biol; 2015 Nov; 21(11):4021-30. PubMed ID: 26152761 [TBL] [Abstract][Full Text] [Related]
13. Modelling interactive effects of multiple disturbances on a coastal lake ecosystem: Implications for management. Jones HFE; Özkundakci D; McBride CG; Pilditch CA; Allan MG; Hamilton DP J Environ Manage; 2018 Feb; 207():444-455. PubMed ID: 29195169 [TBL] [Abstract][Full Text] [Related]
14. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA). Woods JS; Veltman K; Huijbregts MA; Verones F; Hertwich EG Environ Int; 2016; 89-90():48-61. PubMed ID: 26826362 [TBL] [Abstract][Full Text] [Related]
15. Interactive effects of warming, eutrophication and size structure: impacts on biodiversity and food-web structure. Binzer A; Guill C; Rall BC; Brose U Glob Chang Biol; 2016 Jan; 22(1):220-7. PubMed ID: 26365694 [TBL] [Abstract][Full Text] [Related]
16. Sponge biomass and bioerosion rates increase under ocean warming and acidification. Fang JK; Mello-Athayde MA; Schönberg CH; Kline DI; Hoegh-Guldberg O; Dove S Glob Chang Biol; 2013 Dec; 19(12):3581-91. PubMed ID: 23893528 [TBL] [Abstract][Full Text] [Related]
17. Climate change and biological invasions: evidence, expectations, and response options. Hulme PE Biol Rev Camb Philos Soc; 2017 Aug; 92(3):1297-1313. PubMed ID: 27241717 [TBL] [Abstract][Full Text] [Related]
18. Advances in terrestrial and ocean dynamics studies in India. Behera MD; Reddy CS; Khan ML Environ Monit Assess; 2020 Jan; 191(Suppl 3):811. PubMed ID: 31989312 [TBL] [Abstract][Full Text] [Related]
19. Ecological principles of World Ocean monitoring. Izrael YA; Tsiban AV Environ Monit Assess; 1982 Dec; 2(4):425-33. PubMed ID: 24264354 [TBL] [Abstract][Full Text] [Related]
20. Introduction to the Symposium: Parasites and Pests in Motion: Biology, Biodiversity and Climate Change. Williams JD; Boyko CB Integr Comp Biol; 2016 Oct; 56(4):556-60. PubMed ID: 27375273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]