These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 29314609)

  • 1. Chromatographic efficiency of polar capillary columns applied for the analysis of fatty acid methyl esters by gas chromatography.
    Waktola HD; Mjøs SA
    J Sep Sci; 2018 Apr; 41(7):1582-1592. PubMed ID: 29314609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing the relationship between chromatographic efficiency and retention times in temperature-programmed gas chromatography.
    Mjøs SA; Waktola HD
    J Sep Sci; 2015 Sep; 38(17):3014-27. PubMed ID: 26105965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental designs for modeling retention patterns and separation efficiency in analysis of fatty acid methyl esters by gas chromatography-mass spectrometry.
    Skartland LK; Mjøs SA; Grung B
    J Chromatogr A; 2011 Sep; 1218(38):6823-31. PubMed ID: 21851946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transfer of retention patterns in gas chromatography by means of response surface methodology.
    Chhaganlal M; Skartland LK; Mjøs SA
    J Chromatogr A; 2014 Mar; 1332():64-72. PubMed ID: 24529956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gas chromatographic separation of fatty acid methyl esters on weakly polar capillary columns.
    Yamamoto K; Kinoshita A; Shibahara A
    J Chromatogr A; 2008 Feb; 1182(1):132-5. PubMed ID: 18207151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the separation number of capillary columns in programmed temperature gas chromatographic analysis.
    Vezzani S; Moretti P; Castello G
    Anal Chim Acta; 2007 Sep; 599(1):151-61. PubMed ID: 17765075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of gas-liquid chromatography to the analysis of essential oils. Part XVII. Fingerprinting of essential oils by temperature-programmed gas-liquid chromatography using capillary columns with non-polar stationary phases. Analytical methods committee.
    Analyst; 1997 Oct; 122(10):1167-74. PubMed ID: 9463975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation of capillary ionic liquid columns for gas chromatography-mass spectrometry analysis of fatty acid methyl esters.
    Zeng AX; Chin ST; Nolvachai Y; Kulsing C; Sidisky LM; Marriott PJ
    Anal Chim Acta; 2013 Nov; 803():166-73. PubMed ID: 24216211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical aspects of capillary gas chromatography of lower fatty acids [up to C18].
    Krupcík J; Hrivnák J
    J Chromatogr Sci; 1976 Jan; 14(1):4-17. PubMed ID: 1107342
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.
    Talebi M; Patil RA; Sidisky LM; Berthod A; Armstrong DW
    Anal Bioanal Chem; 2018 Jul; 410(19):4633-4643. PubMed ID: 29214537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gibbs energy additivity approaches to QSRR in generating gas chromatographic retention time for identification of fatty acid methyl ester.
    Pojjanapornpun S; Aryusuk K; Lilitchan S; Krisnangkura K
    Anal Bioanal Chem; 2017 Apr; 409(11):2777-2789. PubMed ID: 28168549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tutorial for the Characterization of Fatty Acid Methyl Esters by Gas Chromatography with Highly Polar Capillary Columns.
    Delmonte P; Milani A; Kramer JKG
    J AOAC Int; 2021 May; 104(2):288-299. PubMed ID: 33280025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of ionic liquid stationary phases for the GC analysis of fatty acid methyl esters.
    Dettmer K
    Anal Bioanal Chem; 2014 Aug; 406(20):4931-9. PubMed ID: 24965160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design, fabrication, and evaluation of microfabricated columns for gas chromatography.
    Lambertus G; Elstro A; Sensenig K; Potkay J; Agah M; Scheuering S; Wise K; Dorman F; Sacks R
    Anal Chem; 2004 May; 76(9):2629-37. PubMed ID: 15117208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid identification of fatty acid methyl esters using a multidimensional gas chromatography-mass spectrometry database.
    Härtig C
    J Chromatogr A; 2008 Jan; 1177(1):159-69. PubMed ID: 18037421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of GC stationary phases for the separation of fatty acid methyl esters in biodiesel fuels.
    Goding JC; Ragon DY; O'Connor JB; Boehm SJ; Hupp AM
    Anal Bioanal Chem; 2013 Jul; 405(18):6087-94. PubMed ID: 23728727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenomenon of dual- and single-retention behaviors of solutes and its validation by computational simulation in linear programmed temperature gas chromatography.
    Wu L; Duan X; Liu C; Zhang G; Li QX
    J Sep Sci; 2016 Jul; 39(14):2785-95. PubMed ID: 27241084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of two gas-liquid chromatograph columns for the analysis of fatty acids in ruminant meat.
    Alves SP; Bessa RJ
    J Chromatogr A; 2009 Jun; 1216(26):5130-9. PubMed ID: 19446820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of fatty acid methyl esters with high accuracy and reliability. VI. Rapid analysis by split injection capillary gas-liquid chromatography.
    Bannon CD; Craske JD; Felder DL; Garland IJ; Norman LM
    J Chromatogr; 1987 Oct; 407():231-41. PubMed ID: 3429506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Preparation and chromatographic characteristics of linear [60] fullerene polysiloxane stationary phase for capillary gas chromatography].
    Fan JH; Zeng ZR; Fang PF; Chen YY
    Se Pu; 1999 Nov; 17(6):529-32. PubMed ID: 12552683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.