These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
315 related articles for article (PubMed ID: 29314747)
41. Development of generic raman models for a GS-KO Webster TA; Hadley BC; Hilliard W; Jaques C; Mason C Biotechnol Prog; 2018 May; 34(3):730-737. PubMed ID: 29603893 [TBL] [Abstract][Full Text] [Related]
42. Spectroscopy integration to miniature bioreactors and large scale production bioreactors-Increasing current capabilities and model transfer. Rowland-Jones RC; Graf A; Woodhams A; Diaz-Fernandez P; Warr S; Soeldner R; Finka G; Hoehse M Biotechnol Prog; 2021 Jan; 37(1):e3074. PubMed ID: 32865874 [TBL] [Abstract][Full Text] [Related]
43. Impact of media and antifoam selection on monoclonal antibody production and quality using a high throughput micro-bioreactor system. Velugula-Yellela SR; Williams A; Trunfio N; Hsu CJ; Chavez B; Yoon S; Agarabi C Biotechnol Prog; 2018 Jan; 34(1):262-270. PubMed ID: 29086492 [TBL] [Abstract][Full Text] [Related]
44. Performance monitoring of a mammalian cell based bioprocess using Raman spectroscopy. Li B; Ray BH; Leister KJ; Ryder AG Anal Chim Acta; 2013 Sep; 796():84-91. PubMed ID: 24016587 [TBL] [Abstract][Full Text] [Related]
45. Modulation and modeling of monoclonal antibody N-linked glycosylation in mammalian cell perfusion reactors. Karst DJ; Scibona E; Serra E; Bielser JM; Souquet J; Stettler M; Broly H; Soos M; Morbidelli M; Villiger TK Biotechnol Bioeng; 2017 Sep; 114(9):1978-1990. PubMed ID: 28409838 [TBL] [Abstract][Full Text] [Related]
46. Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Rajendra Y; Balasubramanian S; McCracken NA; Norris DL; Lian Z; Schmitt MG; Frye CC; Barnard GC Biotechnol Prog; 2017 Nov; 33(6):1436-1448. PubMed ID: 28547769 [TBL] [Abstract][Full Text] [Related]
47. The effect of hyperosmolality application time on production, quality, and biopotency of monoclonal antibodies produced in CHO cell fed-batch and perfusion cultures. Qin J; Wu X; Xia Z; Huang Z; Zhang Y; Wang Y; Fu Q; Zheng C Appl Microbiol Biotechnol; 2019 Feb; 103(3):1217-1229. PubMed ID: 30554388 [TBL] [Abstract][Full Text] [Related]
48. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures. Toussaint C; Henry O; Durocher Y J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123 [TBL] [Abstract][Full Text] [Related]
49. On-Line Ion Exchange Liquid Chromatography as a Process Analytical Technology for Monoclonal Antibody Characterization in Continuous Bioprocessing. Patel BA; Pinto NDS; Gospodarek A; Kilgore B; Goswami K; Napoli WN; Desai J; Heo JH; Panzera D; Pollard D; Richardson D; Brower M; Richardson DD Anal Chem; 2017 Nov; 89(21):11357-11365. PubMed ID: 28981255 [TBL] [Abstract][Full Text] [Related]
50. Probabilistic model by Bayesian network for the prediction of antibody glycosylation in perfusion and fed-batch cell cultures. Zhang L; Wang M; Castan A; Hjalmarsson H; Chotteau V Biotechnol Bioeng; 2021 Sep; 118(9):3447-3459. PubMed ID: 33788254 [TBL] [Abstract][Full Text] [Related]
51. Engineering death resistance in CHO cells for improved perfusion culture. MacDonald MA; Nöbel M; Martínez VS; Baker K; Shave E; Gray PP; Mahler S; Munro T; Nielsen LK; Marcellin E MAbs; 2022; 14(1):2083465. PubMed ID: 35737825 [TBL] [Abstract][Full Text] [Related]
52. Improving reliability of Raman spectroscopy for mAb production by upstream processes during bioprocess development stages. Santos RM; Kaiser P; Menezes JC; Peinado A Talanta; 2019 Jul; 199():396-406. PubMed ID: 30952275 [TBL] [Abstract][Full Text] [Related]
53. Evaluation of several protein a resins for application to multicolumn chromatography for the rapid purification of fed-batch bioreactors. Hilbold NJ; Le Saoût X; Valery E; Muhr L; Souquet J; Lamproye A; Broly H Biotechnol Prog; 2017 Jul; 33(4):941-953. PubMed ID: 28371561 [TBL] [Abstract][Full Text] [Related]
54. Real-time amino acid and glucose monitoring system for the automatic control of nutrient feeding in CHO cell culture using Raman spectroscopy. Domján J; Pantea E; Gyürkés M; Madarász L; Kozák D; Farkas A; Horváth B; Benkő Z; Nagy ZK; Marosi G; Hirsch E Biotechnol J; 2022 May; 17(5):e2100395. PubMed ID: 35084785 [TBL] [Abstract][Full Text] [Related]
55. Multi-attribute Raman spectroscopy (MARS) for monitoring product quality attributes in formulated monoclonal antibody therapeutics. Wei B; Woon N; Dai L; Fish R; Tai M; Handagama W; Yin A; Sun J; Maier A; McDaniel D; Kadaub E; Yang J; Saggu M; Woys A; Pester O; Lambert D; Pell A; Hao Z; Magill G; Yim J; Chan J; Yang L; Macchi F; Bell C; Deperalta G; Chen Y MAbs; 2022; 14(1):2007564. PubMed ID: 34965193 [TBL] [Abstract][Full Text] [Related]
56. Glucose monitoring and adaptive feeding of mammalian cell culture in the presence of strong autofluorescence by near infrared Raman spectroscopy. Matthews TE; Smelko JP; Berry B; Romero-Torres S; Hill D; Kshirsagar R; Wiltberger K Biotechnol Prog; 2018 Nov; 34(6):1574-1580. PubMed ID: 30281947 [TBL] [Abstract][Full Text] [Related]
57. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality. Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777 [TBL] [Abstract][Full Text] [Related]
58. Low glucose concentrations within typical industrial operating conditions have minimal effect on the transcriptome of recombinant CHO cells. Gowtham YK; Saski CA; Harcum SW Biotechnol Prog; 2017 May; 33(3):771-785. PubMed ID: 28371311 [TBL] [Abstract][Full Text] [Related]
59. Scale-dependent manganese leaching from stainless steel impacts terminal galactosylation in monoclonal antibodies. Williamson J; Miller J; McLaughlin J; Combs R; Chu C Biotechnol Prog; 2018 Sep; 34(5):1290-1297. PubMed ID: 29885096 [TBL] [Abstract][Full Text] [Related]
60. S-Sulfocysteine simplifies fed-batch processes and increases the CHO specific productivity via anti-oxidant activity. Hecklau C; Pering S; Seibel R; Schnellbaecher A; Wehsling M; Eichhorn T; Hagen Jv; Zimmer A J Biotechnol; 2016 Jan; 218():53-63. PubMed ID: 26654938 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]