BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 29314777)

  • 1. Concomitant reduction of lactate and ammonia accumulation in fed-batch cultures: Impact on glycoprotein production and quality.
    Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O
    Biotechnol Prog; 2018 Mar; 34(2):494-504. PubMed ID: 29314777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combining metabolic and process engineering strategies to improve recombinant glycoprotein production and quality.
    Karengera E; Durocher Y; De Crescenzo G; Henry O
    Appl Microbiol Biotechnol; 2017 Nov; 101(21):7837-7851. PubMed ID: 28924963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altering the central carbon metabolism of HEK293 cells: Impact on recombinant glycoprotein quality.
    Karengera E; Robotham A; Kelly J; Durocher Y; De Crescenzo G; Henry O
    J Biotechnol; 2017 Jan; 242():73-82. PubMed ID: 27940295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fed-batch CHO cell t-PA production and feed glutamine replacement to reduce ammonia production.
    Kim DY; Chaudhry MA; Kennard ML; Jardon MA; Braasch K; Dionne B; Butler M; Piret JM
    Biotechnol Prog; 2013; 29(1):165-75. PubMed ID: 23125190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Feed development for fed-batch CHO production process by semisteady state analysis.
    Khattak SF; Xing Z; Kenty B; Koyrakh I; Li ZJ
    Biotechnol Prog; 2010; 26(3):797-804. PubMed ID: 20014108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of CHO cells to alter lactate metabolism during fed-batch cultures.
    Toussaint C; Henry O; Durocher Y
    J Biotechnol; 2016 Jan; 217():122-31. PubMed ID: 26603123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of dynamic online fed-batch strategies on metabolism, productivity and N-glycosylation quality in CHO cell cultures.
    Chee Furng Wong D; Tin Kam Wong K; Tang Goh L; Kiat Heng C; Gek Sim Yap M
    Biotechnol Bioeng; 2005 Jan; 89(2):164-77. PubMed ID: 15593097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-glutamine fed-batch cultures of 293-HEK serum-free suspension cells for adenovirus production.
    Lee YY; Yap MG; Hu WS; Wong KT
    Biotechnol Prog; 2003; 19(2):501-9. PubMed ID: 12675594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of PER.C6 cells cultivated under fed-batch conditions at low glucose and glutamine levels.
    Maranga L; Goochee CF
    Biotechnol Bioeng; 2006 May; 94(1):139-50. PubMed ID: 16523524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification and control of novel growth inhibitors in fed-batch cultures of Chinese hamster ovary cells.
    Mulukutla BC; Kale J; Kalomeris T; Jacobs M; Hiller GW
    Biotechnol Bioeng; 2017 Aug; 114(8):1779-1790. PubMed ID: 28409820
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human 293 cell metabolism in low glutamine-supplied culture: interpretation of metabolic changes through metabolic flux analysis.
    Nadeau I; Sabatié J; Koehl M; Perrier M; Kamen A
    Metab Eng; 2000 Oct; 2(4):277-92. PubMed ID: 11120640
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A framework for the systematic design of fed-batch strategies in mammalian cell culture.
    Kyriakopoulos S; Kontoravdi C
    Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino acid and glucose metabolism in fed-batch CHO cell culture affects antibody production and glycosylation.
    Fan Y; Jimenez Del Val I; Müller C; Wagtberg Sen J; Rasmussen SK; Kontoravdi C; Weilguny D; Andersen MR
    Biotechnol Bioeng; 2015 Mar; 112(3):521-35. PubMed ID: 25220616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning metabolic efficiency for increased product yield in high titer fed-batch Chinese hamster ovary cell culture.
    Helfer A; Gros S; Kolwyck D; Karst DJ
    Biotechnol Prog; 2023; 39(3):e3327. PubMed ID: 36700684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell-controlled hybrid perfusion fed-batch CHO cell process provides significant productivity improvement over conventional fed-batch cultures.
    Hiller GW; Ovalle AM; Gagnon MP; Curran ML; Wang W
    Biotechnol Bioeng; 2017 Jul; 114(7):1438-1447. PubMed ID: 28128436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of metabolic responses, genetic variations, and microsatellite instability in ammonia-stressed CHO cells grown in fed-batch cultures.
    Chitwood DG; Wang Q; Elliott K; Bullock A; Jordana D; Li Z; Wu C; Harcum SW; Saski CA
    BMC Biotechnol; 2021 Jan; 21(1):4. PubMed ID: 33419422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strategies for fed-batch cultivation of t-PA producing CHO cells: substitution of glucose and glutamine and rational design of culture medium.
    Altamirano C; Paredes C; Illanes A; Cairó JJ; Gòdia F
    J Biotechnol; 2004 May; 110(2):171-9. PubMed ID: 15121336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate metabolism.
    Ma N; Ellet J; Okediadi C; Hermes P; McCormick E; Casnocha S
    Biotechnol Prog; 2009; 25(5):1353-63. PubMed ID: 19637321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated dynamic fed-batch process and media optimization for high productivity cell culture process development.
    Lu F; Toh PC; Burnett I; Li F; Hudson T; Amanullah A; Li J
    Biotechnol Bioeng; 2013 Jan; 110(1):191-205. PubMed ID: 22767053
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced glutamine concentration improves protein production in growth-arrested CHO-DG44 and HEK-293E cells.
    Rajendra Y; Kiseljak D; Baldi L; Hacker DL; Wurm FM
    Biotechnol Lett; 2012 Apr; 34(4):619-26. PubMed ID: 22127760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.