These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29314783)

  • 1. Controlling the error on target motion through real-time mesh adaptation: Applications to deep brain stimulation.
    Bui HP; Tomar S; Courtecuisse H; Audette M; Cotin S; Bordas SPA
    Int J Numer Method Biomed Eng; 2018 May; 34(5):e2958. PubMed ID: 29314783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Error Control for Surgical Simulation.
    Bui HP; Tomar S; Courtecuisse H; Cotin S; Bordas SPA
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):596-607. PubMed ID: 28541192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An a posteriori Error Estimate for Scanning Electron Microscope Simulation with Adaptive Mesh Refinement.
    Mitchell WF; Villarrubia JS
    J Sci Comput; 2019; 80(3):. PubMed ID: 32165785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of intraoperative brain shift by combination of stereovision and doppler ultrasound: phantom and animal model study.
    Mohammadi A; Ahmadian A; Azar AD; Sheykh AD; Amiri F; Alirezaie J
    Int J Comput Assist Radiol Surg; 2015 Nov; 10(11):1753-64. PubMed ID: 25958061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.
    Spilker RL; de Almeida ES; Donzelli PS
    Crit Rev Biomed Eng; 1992; 20(3-4):279-313. PubMed ID: 1478094
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mixed-element Octree: a meshing technique toward fast and real-time simulations in biomedical applications.
    Lobos C; González E
    Int J Numer Method Biomed Eng; 2015 Dec; 31(12):. PubMed ID: 26011778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting Neuronal Fiber Tracts for Deep Brain Stimulation Therapy Using Interactive, Patient-Specific Models.
    Janson AP; Butson CR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and experimental studies in needle-tissue interactions.
    Konh B; Honarvar M; Darvish K; Hutapea P
    J Clin Monit Comput; 2017 Aug; 31(4):861-872. PubMed ID: 27430491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-robot ultrasound-guided needle placement: closing the planning-imaging-action loop.
    Kojcev R; Fuerst B; Zettinig O; Fotouhi J; Lee SC; Frisch B; Taylor R; Sinibaldi E; Navab N
    Int J Comput Assist Radiol Surg; 2016 Jun; 11(6):1173-81. PubMed ID: 27097600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle swarm optimization for programming deep brain stimulation arrays.
    Peña E; Zhang S; Deyo S; Xiao Y; Johnson MD
    J Neural Eng; 2017 Feb; 14(1):016014. PubMed ID: 28068291
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling and simulation of flexible needles.
    Goksel O; Dehghan E; Salcudean SE
    Med Eng Phys; 2009 Nov; 31(9):1069-78. PubMed ID: 19674926
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive meshing technique applied to an orthopaedic finite element contact problem.
    Roarty CM; Grosland NM
    Iowa Orthop J; 2004; 24():21-9. PubMed ID: 15296201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Factors Affecting Stereotactic Accuracy in Image-Guided Deep Brain Stimulator Electrode Placement.
    Ko AL; Ibrahim A; Magown P; Macallum R; Burchiel KJ
    Stereotact Funct Neurosurg; 2017; 95(5):315-324. PubMed ID: 28889124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A universal algorithm for an improved finite element mesh generation Mesh quality assessment in comparison to former automated mesh-generators and an analytic model.
    Kaminsky J; Rodt T; Gharabaghi A; Forster J; Brand G; Samii M
    Med Eng Phys; 2005 Jun; 27(5):383-94. PubMed ID: 15863347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevalent placement error of deep brain stimulation electrode in movement disorders (technical considerations).
    Kloc M; Kosutzka Z; Steno J; Valkovic P
    Bratisl Lek Listy; 2017; 118(11):647-653. PubMed ID: 29216719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity-based adaptive mesh refinement collocation method for dynamic optimization of chemical and biochemical processes.
    Xiao L; Liu P; Liu X; Zhang Z; Wang Y; Yang C; Gui W; Chen X; Zhu B
    Bioprocess Biosyst Eng; 2017 Sep; 40(9):1375-1389. PubMed ID: 28593458
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the tumor registration error in biopsy procedures performed under real-time PET/CT guidance.
    Fanchon LM; Apte A; Schmidtlein CR; Yorke E; Hu YC; Dogan S; Hatt M; Visvikis D; Humm JL; Solomon SB; Kirov AS
    Med Phys; 2017 Oct; 44(10):5089-5095. PubMed ID: 28494089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A voxel-based finite element model for the prediction of bladder deformation.
    Chai X; van Herk M; Hulshof MC; Bel A
    Med Phys; 2012 Jan; 39(1):55-65. PubMed ID: 22225275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.