These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 29314837)

  • 21. Repacking protein cores with backbone freedom: structure prediction for coiled coils.
    Harbury PB; Tidor B; Kim PS
    Proc Natl Acad Sci U S A; 1995 Aug; 92(18):8408-12. PubMed ID: 7667303
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Building alternate protein structures using the elastic network model.
    Yang Q; Sharp KA
    Proteins; 2009 Feb; 74(3):682-700. PubMed ID: 18704927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction and evaluation of side-chain conformations for protein backbone structures.
    Shenkin PS; Farid H; Fetrow JS
    Proteins; 1996 Nov; 26(3):323-52. PubMed ID: 8953653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Criteria that discriminate between native proteins and incorrectly folded models.
    Novotný J; Rashin AA; Bruccoleri RE
    Proteins; 1988; 4(1):19-30. PubMed ID: 3186690
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Reconstruction of protein conformations from estimated positions of the C alpha coordinates.
    Payne PW
    Protein Sci; 1993 Mar; 2(3):315-24. PubMed ID: 8453371
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Explicit orientation dependence in empirical potentials and its significance to side-chain modeling.
    Ma J
    Acc Chem Res; 2009 Aug; 42(8):1087-96. PubMed ID: 19445451
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How similar must a template protein be for homology modeling by side-chain packing methods?
    Chung SY; Subbiah S
    Pac Symp Biocomput; 1996; ():126-41. PubMed ID: 9390228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exploring protein domain organization by recognition of secondary structure packing interfaces.
    Deng L; Wu A; Dai W; Song T; Cui Y; Jiang T
    Bioinformatics; 2014 Sep; 30(17):2440-6. PubMed ID: 24813541
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
    Mehler EL; Hassan SA; Kortagere S; Weinstein H
    Proteins; 2006 Aug; 64(3):673-90. PubMed ID: 16729264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. TOUCHSTONE II: a new approach to ab initio protein structure prediction.
    Zhang Y; Kolinski A; Skolnick J
    Biophys J; 2003 Aug; 85(2):1145-64. PubMed ID: 12885659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An automated method for modeling proteins on known templates using distance geometry.
    Srinivasan S; March CJ; Sudarsanam S
    Protein Sci; 1993 Feb; 2(2):277-89. PubMed ID: 8443604
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy-based reconstruction of a protein backbone from its alpha-carbon trace by a Monte-Carlo method.
    Kaźmierkiewicz R; Liwo A; Scheraga HA
    J Comput Chem; 2002 May; 23(7):715-23. PubMed ID: 11948589
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of a rotamer library for coarse-grained models in protein-folding simulations.
    Larriva M; Rey A
    J Chem Inf Model; 2014 Jan; 54(1):302-13. PubMed ID: 24354725
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool.
    Bower MJ; Cohen FE; Dunbrack RL
    J Mol Biol; 1997 Apr; 267(5):1268-82. PubMed ID: 9150411
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Physics-based potentials for the coupling between backbone- and side-chain-local conformational states in the UNited RESidue (UNRES) force field for protein simulations.
    Sieradzan AK; Krupa P; Scheraga HA; Liwo A; Czaplewski C
    J Chem Theory Comput; 2015 Feb; 11(2):817-31. PubMed ID: 25691834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Orientational potentials extracted from protein structures improve native fold recognition.
    Buchete NV; Straub JE; Thirumalai D
    Protein Sci; 2004 Apr; 13(4):862-74. PubMed ID: 15044723
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The dominant role of side-chain backbone interactions in structural realization of amino acid code. ChiRotor: a side-chain prediction algorithm based on side-chain backbone interactions.
    Spassov VZ; Yan L; Flook PK
    Protein Sci; 2007 Mar; 16(3):494-506. PubMed ID: 17242380
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A distance- and orientation-dependent energy function of amino acid key blocks.
    Chen L; He J
    Biopolymers; 2014 Jun; 101(6):681-92. PubMed ID: 24222511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Coupling backbone flexibility and amino acid sequence selection in protein design.
    Su A; Mayo SL
    Protein Sci; 1997 Aug; 6(8):1701-7. PubMed ID: 9260282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Scoring predictive models using a reduced representation of proteins: model and energy definition.
    Fogolari F; Pieri L; Dovier A; Bortolussi L; Giugliarelli G; Corazza A; Esposito G; Viglino P
    BMC Struct Biol; 2007 Mar; 7():15. PubMed ID: 17378941
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.